
Live Programming in Scientific Simulation

Ben Swift1, Andrew Sorensen1, Henry Gardner1, Peter Davis1,

Viktor K. Decyk2

c© The Authors 2015. This paper is published with open access at SuperFri.org

We demonstrate that a live-programming environment can be used to harness and add run-

time interactivity to scientific simulation codes. Through a set of examples using a Particle-In-Cell

(PIC) simulation framework we show how the real-time, human-in-the-loop interactivity of live-

programming can be incorporated into traditional “offline” and development workflows. We discuss

how live programming tools and techniques can be productively integrated into the existing HPC

landscape to increase productivity and enhance exploration and discovery.

Keywords: live programming, particle-in-cell, JIT-compilation.

Developing simulation codes which effectively model scientific phenomena, enable explo-

ration and discovery, and run efficiently on modern heterogeneous HPC architectures is a difficult

and demanding undertaking. One of the reasons for this is a very slow feedback loop between

code development, execution and analysis. In this paper, we show how tools and techniques

from live programming can constitute a dramatic intervention in HPC software development,

modification, tuning and deployment. Using the Extempore [15] live-programming environment

we demonstrate how procedure-level “hot-swapping” (the ability to change an executing proce-

dure while it is running) can be added to existing simulation codes (written in highly optimised

languages such as C/C++/Fortran) in order to provide HPC application developers with the

level of interactivity which is now the characteristic of software development in other modern

application domains.

This paper presents a case study that starts with a mature Particle-In-Cell (PIC) simulation

framework that has been designed for next-generation, heterogeneous HPC architectures [3]. In

a tutorial-like fashion, we show how this code can be harnessed and run interactively using

the Extempore live-programming environment. This harnessed code then allows the program-

mer to interact with and modify it in ways unenvisioned by the original developers. Following

our presentation of this case study, we then discuss the wider prospects for incorporating this

type of harnessing and live-programming in the development and deployment of HPC scientific

simulation codes.

1. Outline of a PIC simulation code

The Particle-in-Cell (PIC) technique [2] is widely used in plasma physics and plasma engi-

neering. In the technique, plasmas are modelled by tracking the trajectories of many particles

interacting self-consistently with external electric and magnetic fields. Various domain decompo-

sition techniques (e.g. [9]) have been developed for running these codes efficiently across parallel

architectures and this area of scientific simulation is a heavy user of HPC. The specific PIC codes

we use in this paper are “skeleton” PIC codes written in C and Fortran 3. These codes have been

developed for exploring new computational architectures [3] and as a foundation for teaching

and reasoning about PIC simulation. They support various parallelisation schemes, including

shared memory (OpenMP), distributed memory (MPI) and GPU accelerators (CUDA).

1Australian National University, Canberra, Australia
2University of California, Los Angeles, USA
3http://picksc.idre.ucla.edu/software/skeleton-code

DOI: 10.14529/jsfi150401

4 Supercomputing Frontiers and Innovations

Although there are (sometimes subtle) variations between specific PIC approaches, the main

simulation loop has three steps [3].

1. deposit the electric charge (or similar) from the particles into a grid

2. solve the field equations to obtain the fields (electric or electromagnetic)

3. push (move) the particles in response to that field

The data structures which are updated during this loop are the particle coordinates and the

fields.

The basic structure of a representative PIC skeleton code (in C but with details omitted for

clarity) is shown in Figure 1. The subroutines deposit, solve and push do the main work of

int num_particles = 1e6;
int grid_size = 512;

/* initialise the particle and field data */
float* part = init_particles(num_particles);
float complex* field = init_fields(grid_size);

/* main simulation loop */
while (step < num_steps)
{
 deposit(part); /* deposit charge on grid */
 solve(part, field); /* calculate field */
 push(part, field); /* move particles */
 step++; /* increment timestep */
}

Figure 1. Basic PIC code structure (in C with details omitted for clarity)

the simulation. Each of these procedures can be quite sophisticated; they may run in parallel

across a distributed-memory compute cluster using MPI and they may also take advantage of

GPU acceleration.

In the conventional workflow, a PIC simulation code is compiled and linked into an exe-

cutable which is then run either on a single machine or across a cluster (using mpirun). In the

next section we will show how the Extempore live-programming environment can be used to

harness and run such a simulation in an interactive manner.

2. Real-time intervention in PIC simulation

In order to make our C-language PIC code interactive, it needs to be compiled to generate a

shared library (e.g. with GCC’s -shared flag). We can then start up the Extempore live coding

environment as a standalone process on the host computer or on a cluster through mpirun or

some other remote execution mechanism. The Extempore instance binds a TCP socket and

waits, listening for code to execute. The programmer can then load and bind the PIC routines

and variables from the shared library into a running Extempore process.

Figure 2 shows the main PIC simulation loop, equivalent to Figure 1, as it would be run from

Extempore. The Extempore language uses an s-expression syntax which we will not describe in

detail here. The feature of this figure is that the simulation routines deposit, solve and push

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 5

directly address machine code generated from the original C code, but the toplevel while loop

is now written in Extempore. The primary simulation loop is now controlled from Extempore,

even though the heavy computation is still carried out by procedures compiled from C.

;; this is just a simple 1D pic code, for clarity
(bind-val num_particles i32 1e6)
(bind-val grid_size i32 512)

;; initialise the particle and field data
(bind-val part float* (init_particles num_particles))
(bind-val field float* (init_fields grid_size))

;; main simulation loop
(while (< step num_steps)
 (deposit part) ;; deposit charge on grid
 (solve part field) ;; calculate field
 (push part field) ;; move particles
 (set! step (+ step 1))) ;; increment timestep

Figure 2. PIC code structure in Extempore equivalent to Figure 1

Once it is harnessed in Extempore, the programmer can now interactively send one or more

s-expressions (Extempore “statements”) to the Extempore compiler. These expressions are then

“just-in-time” (JIT) compiled into native machine code through an LLVM [8] back-end and

begin executing immediately. At this point, the execution of the program will produce the same

results as the C code in Figure 1 (including any MPI-based communication) so long as the same

procedures are being called in their correct sequence.

Once the PIC simulation code is running in Extempore, the programmer is able to make

changes to the source code. Once these changes are complete, re-evaluating the relevant code will

re-compile that code chunk (e.g. a subroutine) and hotswap it into the next loop of the running

program. For example, we might add a call to some (pre-prepared) visualisation subroutines into

our main loop, as shown in Figure 3. In the next iteration of the main loop, the visualisations

would be drawn and then updated for each step through the simulation loop. The rest of the

computation, including the state of the particles and the fields, will be preserved unchanged. A

screenshot from a PIC simulation corresponding to the code in Figure 3 is shown in Figure 4,

and it can also be seen “in action” in a video accompanying this paper.4

Extempore is designed to mix the high-level expressiveness of Lisp with the low-level expres-

siveness of C. Extempore brings modern language features, such as an advanced type system,

type inference, strong temporal semantics, reified generics, first class closures and macros, to-

gether with low-level expressivity, including direct pointer manipulation, explicit memory man-

agement, architecture width primitives and strong C-ABI compatibility. Because of these design

considerations, and despite the dynamic interactivity of the live-programming workflow in this

example, the performance of the main loop is comparable to that of the original C code (see

Table 1). This efficiency is in marked contrast to other dynamic “glue-language” approaches

4https://vimeo.com/126577281

Live Programming in Scientific Simulation

6 Supercomputing Frontiers and Innovations

;; main simulation loop
(while (< step num_steps)
 (deposit part)
 (solve part field)
 (push part field)
 ;; add the visualisation routines
 (draw_particles part)
 (draw_field field)
 (set! step (+ step 1)))

Figure 3. Adding a call to the visualisation routines into the running main loop

Figure 4. A screenshot of the running PIC simulation with a live visualisation of the particles.

Here the visuals are shown next to the Extempore code in the text editor, but they could be

shown on any monitors (including being streamed over the network)

(e.g. NumPy [13]) which exhibit good performance when the execution stays within the un-

derlying compiled Fortran libraries, but poor performance if it “bubbles up” into the python

wrapper code5. In live programming it is natural and, indeed, desirable to have such a “bubble

up” in order to enable free and fluid steering, tuning, diagnosis and discovery in scientific sim-

ulation. Accordingly, live-programming environments for HPC need to generate fast executable

code, whilst also providing programmers with more expressive tools to better manage the time

and space demands of these complex, running simulations.

As a demonstration of the low overheads in using Extempore to harness a PIC simulation in a

parallel environment, we have performed a number of benchmarking runs on a small OpenStack-

based cloud cluster (4 × Intel Xeon compute nodes, 8 cores & 64GB ram per node). Our code

uses MPI for distributed-memory processing, and contains a mixture of Extempore code and

calling pre-compiled C subroutines as described above. The results are shown in Table 1. From

5For an excellent analysis of the “bubble up” performance problems associated with the R statistics language

see [11]

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 7

the table, it is clear that the Extempore overheads are largely confined to a start-up cost of 20

seconds and thereafter the Extempore version has almost identical performance to the C code

on up to 32 cores and 1.44× 108 particles.

Table 1. Comparison of the PIC code running time as a

compiled C program vs running live in Extempore, calling

subroutines from a shared library. Total wall clock time is

shown, with average and standard deviation calculated

over three runs

environment cores particles time (sec) time s.d.

C 8 1.44×108 1574 1.38

16 1.44×108 834 1.88

32 1.44×108 482 1.35

Extempore 8 1.44×108 1608 1.3

16 1.44×108 858 0.67

32 1.44×108 496 0.77

As a further extension of our case study, we will now intervene in our running simulation

to add an external electric field. This is shown in Figure 5 where we add an inner loop to the

main simulation which manipulates data in the field region of the heap to add an external

electric field which sinusoidally varies over the domain. When the main loop is re-evaluated

after this change, the programmer can immediately see the way this field affects the particle

behaviour through the real-time visualisation added in the previous step. This instant feedback

is extremely useful in parameter tuning, where different values can be tried until a desired result

is achieved.

;; main simulation loop
(while (< step num_steps)
 (deposit part)
 (solve part field)
 (push part field)
 (draw_particles part)
 (draw_field field)
 ;; add an external electric field
 (doloop (i grid_size)
 (+= field (cos (* 2PI (/ i grid_size)))))
 (set! step (+ step 1)))

Figure 5. Adding an external electric field to the simulation by directly writing a new tight loop

into the main simulation loop

As a final example, we can allow more of our original PIC simulation code to “bubble-up”

into the Extempore layer by re-writing one of the main simulation routines. Figure 6 shows a

deposit subroutine in Extempore code, which has the same behaviour as the deposit subroutine

in the original C code. In the “deposit charge” step of the PIC simulation, the charge density

is estimated by calculating the contribution of each particle to nearby grid points. In this first-

Live Programming in Scientific Simulation

8 Supercomputing Frontiers and Innovations

order code, each particle’s contribution to the total charge density is considered only at the

closest two grid points (i.e. above and below the particle’s position).

(bind-func deposit
 "for each particle, deposit the charge on grid using
1D linear interpolation"
 (lambda (part)
 (doloop (j num_particles)
 (let ((x (pref part j)) ;; read particle x position
 (x_grid (floor x)) ;; xpos of lower gridpoint
 (idx (convert x_grid i32))
 (dx (- x x_grid))) ;; distance to lower gridpoint
 ;; interpolate & deposit charge at lower grid point
 (+= q idx (* charge_per_particle x_grid))
 ;; interpolate & deposit charge at upper grid point
 (+= q (+ idx 1) (* charge_per_particle (- 1.0 dx)))))))

Figure 6. The “deposit charge on grid” subroutine

Replacing subroutines from the original C code with new Extempore variants provides in-

creasing levels of run-time interactivity, as each new Extempore routine can now be further

modified and refined on-the-fly. Figure 7 shows how the new Extempore deposit subroutine

can be updated to use cubic interpolation. This gives increased simulation accuracy at the ex-

pense of increased computational complexity. Again, since the visualisation routines are still

present in the main loop, the programmer can see the results of this new deposit subroutine

when it is hot-swapped into the main loop. No recompilation of the main loop is required — the

new deposit routine will be called automatically on the next iteration of the loop.

This last part of our example scenario is complicated enough that we would need to have a

good reason to write it live for a production code. However, the live approach might speed up

the discovery process, particularly at the prototyping phases of software development. Some low-

order interpolation schemes can be unstable, sometimes violently and dramatically. Comparing

different solvers or boundary conditions in a live harness could speed up the feedback loop and

be very insightful.

(bind-func deposit
 "same as before, but with *quadradtic* interpolation"
 (lambda (part)
 (doloop (j num_particles)
 (let ((x (pref part j)) ;; read particle x position
 (x_grid (floor (+ x .5))) ;; xpos of lower gridpoint
 (idx (convert x_grid i32))
 (dx (- x x_grid))) ;; distance to lower gridpoint
 (+= q idx (* .5 charge_per_particle (pow (- .5 dx) 2.)))
 (+= q (+ idx 1) (* charge_per_particle (- .75 (pow dx 2.))))
 (+= q (+ idx 2) (* .5 charge_per_particle (pow (+ .5 dx) 2.)))))))
Figure 7. An updated “deposit charge on grid” subroutine which uses quadratic interpolation in

the charge depositing step, so that the charge from each particle is deposited to the three closest

grid points. This is more accurate than the original linear deposit routine shown in Figure 6,

but also more computationally expensive

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 9

2.1. Prospects for Discovery in PIC Simulation

The above examples constitute the first effective demonstration of live-programming har-

nessing of legacy scientific software in the literature that we are aware of (certainly this is the

case for Particle in Cell simulation). Although they can be thought of as being illustrative, the

demonstrated effectiveness of these examples paves the way for imagining future prospects for

discovery.

One HPC scenario that comes to mind is that of a harnessed PIC simulation of an “always

on” plasma like a steady-state plasma experiment or a steady-state model of an astrophysical

system such as the sun. Within a live-coding harness one could easily undertake live numerical

experiments for discovering new insights into plasma behavior. An important tool for such

discoveries is the frequency spectrum, sometimes called spectroscopy in other fields. To compute

this numerically we would take data (the plasma potential or the electric or magnetic fields) from

the last N time steps, e.g., N=1000. In plasmas these physical quantities oscillate collectively

at specific frequencies. In the simulation, we would compute a Fourier time integral such as∫
f(k, t)exp(−iωt)dt, where t varies for these 1000 time steps, for each value of k. We would

display this as a function of ω versus k, such as a color map or contour plot. When the plasma

advances one step, we would throw away the oldest data point and add the newest one. Thus

we would have a snapshot of the current frequencies for various wavelengths as the simulation

proceeds. This could reveal many non-linearities that might generate new frequencies, or amplify

existing frequencies in the spectrum. For example, the insertion of a substantial group of particles

moving with a velocity vbeam could lead to the growth of waves whose frequency is given by

ω = kvbeam. As another example, in the PIC codes by default the ions are a neutralizing

background. This could be modified to give them a sinusoidal density perturbation (which can

be fixed, like the fixed electric field mentioned above.) The particles moving across such an ion

profile might generate new plasma frequencies via a parametric process. On the other hand, some

of these new waves might also be “fake physics” coming from numerical errors in the simulation.

Through a trial and error process of discovery it is possible that new and interesting plasma

phenomena could be revealed and distinguished from numerical artefacts.

3. Considering Liveness

Up until now we have only briefly discussed potential benefits of liveness in scientific software

development and simulation. In this section we highlight a few specific areas where we believe

that the liveness will become important.

3.1. Steering

Computational steering [12] has long promised benefits for HPC and computational science.

In 2007, the National Science Foundation (NSF) workshop [5] highlighted the need for dynamic

interactivity as a looming “grand challenge” in scientific computation and data analysis. In

particular, the view of the workshop was that “systems need to become more dynamic and

amenable to steering by users and be more responsive to changes in the environment” [5, p31].

In a more recent survey of the field, Mattoso et al. [10] discussed the current landscape in

regard to dynamic HPC workflow steering. They found that while progress has been made in

some aspects, such as the ability to cancel or re-distribute HPC subtasks and the ability to

modify particular parameters and convergence conditions at run-time, domain-level dynamic

Live Programming in Scientific Simulation

10 Supercomputing Frontiers and Innovations

interactivity, such as inserting low-level debugging statements into running code, or adding new

behaviours to a running simulation, remains an open challenge. It is this challenge that we believe

can be met through the incorporation of live-programming tools and techniques into dynamic

HPC workflows. Our example of the always-on plasma simulation in the previous section is one

possible steered HPC workflow.

3.2. Rapid Prototyping in Software Development

Just as “discovery” in HPC is a slow and painful process, HPC architectures themselves

are notoriously difficult to program, and their problem domains are often not well understood

from a computational standpoint. A significant risk for HPC programs is that of over-investing

substantial resources into large “waterfall” development projects. One risk mitigation strategy

is to focus heavily on early prototyping including repeated execution of code versions which may

even fail being incorrect (“fail fast, fail often” is one of the new software development mantras).

While the cavalier nature of this process may strike some as profoundly unsuited to the rigorous

demands of good engineering, the value of early rapid prototyping is now widely regarded as

best practice even in the HPC community [7].

There are, of course, costs associated with this early prototyping. Prototypes are often

developed on a single machine, running serial codes, written in a higher level language such as

Python. It can become difficult to later disentangle the high-performance production code from

these higher-level languages.

In contrast, the live-programming approach described here can enable prototyping to happen

on small development clusters, running parallel algorithms with a high performance language

from the very outset. The interactive, programmer-driven evaluate-compile-execute workflow

works even in a distributed-memory cluster environment (see Table 1). Extempore processes are

network addressable, and can be run in a distributed fashion across a cluster of nodes. Code can

be sent (over a TCP connection) from a developer’s workstation for evaluation on either one,

some, or all of the nodes in the cluster. In this way it is even possible to have different programs

running on each node which could be especially useful for debugging situations where the data

and behaviour of a single node can be explored and contrasted with other live simulations on

other nodes. Using the same language for prototyping and production saves considerable re-

engineering down the track.

We believe that live programming environments like Extempore provide a key advantage

by allowing developers to move seamlessly from prototyping to production. Indeed, under ideal

circumstances it should be difficult to identify when a project moves from prototyping into

production, and then back to prototyping in order to properly support the ongoing development

and maintenance of the system. In short, the distinction between prototyping and production is

lost as live-programming integration times become increasingly short.

3.3. Resource Management

System resource management is becoming an increasingly disparate interplay of heteroge-

nous hardware running heterogenous systems residing in a heterogenous cloud. The great com-

plexity that this picture paints is also a source of great opportunity to develop solutions that

can be more easily tailored to target the exact requirements of the problem at hand. Such solu-

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 11

tions would provide the potential for huge cost savings, and a more equitable playing field for

large-scale “on-demand” scientific computing.

Taking advantage of these opportunities places ever greater demands on software develop-

ers, who must begin to integrate many aspects of resource management, which were previously

external concerns, into their software projects. In a real sense HPC site managers and soft-

ware developers are more exposed to the physical hardware now than they have been for a

generation including consideration of aspects, such as processor affinity, memory locality, vector

register sizes, phi-cores and GPGPU, cachelines, node management, code scheduling, network

synchronization and time management.

We believe that live programming can help to manage these complexities by making resource

management solutions more dynamic. The ability to design and control resource management

solutions directly in a live programming environment presents opportunities for monitoring

resource usage more effectively and adapting more rapidly to changing requirements. To take

advantage of these opportunities the roles of developers and technical operations have become

increasingly blurred, which has in turn lead to a growing interest in “DevOps” — the integration

of development and technical operations. By making cluster management, process deployment

and runtime-scheduling manageable within a live-programming environment demanding real-

time resource analysis and optimization becomes possible.

3.4. Visualisation and Analysis

Live programming provides excellent support for real-time data visualisation and analysis.

As the language R has been demonstrated so powerfully, a dynamic code environment is very

useful for data inspection, analysis and reduction. This ability to both produce simulation data

and analyze that data in real-time is a powerful combination in the exploration of new science.

As the scale of data being produced by “big science” reaches into the petaflops per second6 there

is an increasing interest in this style of “big data” analysis being managed in real-time. In HPC

it is increases the case that big data cannot be moved from the site but must be visualized in situ

when the job is running, or afterwards with a separate diagnostic program. Live programming

environments, such as Extempore, may provide one possible solution to this problem by coupling

highly efficient real-time data processing with the ability to steer the data analysis pipeline with

unprecedented flexibility.

3.5. Exploration

By supporting human-in-the-loop interaction live programming supports changes to HPC

codes in time scales applicable to direct human perception. Changes made to a code’s textual

representation, can be immediately integrated into a running system, and the effectiveness of

those changes can be directly witnessed by the developer. Increasing the role of human perception

in development allows programmers to both see and hear the changes that are introduced into

a running simulation in direct response to modifications made to the programs “static” code

representation. This in turn allows a broader range of human sense perceptions to be brought

to bear on a given problem domain, increasing the potential for learning and discovery.

6As an example, the Square Kilomoter Array is expected to produce in excess of 100 petaflops per second [4]

Live Programming in Scientific Simulation

12 Supercomputing Frontiers and Innovations

4. Discussion

Our simple PIC case study has shown that live programming can be leveraged to rapidly

prototype new simulation models based upon extant HPC codes. Figure 2 highlighted the ease

with which a C library can be incorporated into a top level Extempore simulation loop. The

accompanying video presentation7 demonstrates how Extempore can then be used to decompose

the simulation across a distributed and potentially heterogeneous cluster with significant levels

of control over the codes executing on each node.

Legacy code can be efficiently replaced over time as demand for increased performance,

interactivity, numerical accuracy or functionality arises. Figure 6 provided an example of how

strong language integration with C made legacy-code integration both convenient and efficient.

Strong support for legacy codebases is of vital importance to the Scientific community, not only

to support code reuse, but also where the communities believe the legacy code to be strong.

Figure 7 provided a pragmatic example of how simple, but often deep changes can be made

to an active simulation — without losing the execution state of the system. In this case a change

to the numerical accuracy of the simulation was prototyped through the addition of a simple

change to the interpolation algorithm. Experimentation with small and relatively simple changes,

such as this one, is sometimes resisted due to the overall complexity involved in releasing new

versions of a large monolithic codebase. Live programming also removes the need to restart

a running simulation, a significant advantage for long running, resource intensive production

environments.

Our small case study has attempted to demonstrate how the Extempore programming lan-

guage can be used as an interface for human-in-the-loop interactivity. We anticipate that pro-

viding scientists with the tools to modify the current execution state of their simulations, by

changing and modifying a codes textual representation on-the-fly, will present opportunities for

“deep” interaction. Significantly these opportunities exist not just to support engineering, as

alluded too above, but also to support science. Live programming is not simply for code de-

bugging, optimization, and refactoring, although these things are extremely valuable, but also

for exploration and discovery. In Figure 5 we demonstrated how the addition of a new external

electric field could be tested through experimentation in the running simulation. We believe that

the ease with which these types of experiments can be designed, executed, and evaluated, will

help to assist scientists to obtain a greater understanding of complex computational models.

Our purpose in this paper has been to draw a picture of what “live programming” might

mean for HPC in the future. We have occasionally made remarks in the paper to a near per-

formance equivalence between live programming environments (Extempore in this case) and

existing HPC technologies. Although the presentation of detailed performance benchmarks for

Extempore against other languages is work in progress, and outside of the scope of this paper we

remark that single node benchmarks, we have performed from the “Computer Language Bench-

marks Game” [16] for code written entirely in Extempore (i.e. not harnessed from C code), show

performance penalties against code written entirely in C of less than a factor of two (1.25 for the

Fasta Benchmark with N=25,000,000 and 1.50 for the NBody Benchmark with N=50,000,000).

Experiments, that we have performed and that harness an MPI version of our PIC framework,

demonstrate comparable performance, as shown in Table 1.

7https://vimeo.com/126577281

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 13

Conclusion

This paper has provided a proof-of-concept demonstration that a live-programming environ-

ment can be used with extant HPC codes in a deeply interactive fashion. Our approach promises

to combine the development experience of writing high-level glue code in a scripting language

with the performance and control of native code. By giving scientists and HPC application

developers faster feedback about what works, what is broken, and what our codes are doing

while they are running, we can develop simulation codes more efficiently and make better use of

increasingly complex array of HPC resources at our disposal.

In this paper we have not spent time describing the details of the Extempore language and

environment. Although Extempore is somewhat unique in its efforts to specifically support “live

programming” there is a number of other new general-purpose languages that have recently also

begun to target high performance, scientific computing. Swift [6], Rust [14] and Julia [1] are a

few of the new languages targeting high performance, parallel, computing contexts with some

degree of “liveness” (Swift playgrounds for example). These new languages can be useful for

scientific simulation in the future.

In this paper we have highlighted how Extempore may be used to rapidly prototype “deep”

interaction by extending extant HPC codes. Ultimately our goal with Extempore is not simply

to provide a high performance, hot-swappable C/C++/Fortran but, instead, to work towards

the more far-reaching goal of bringing modern language design concepts, such as advanced

type systems, into the realm of high performance scientific computing. Our approach has been

a pragmatic one that emphasises the value in legacy codes, approaching the wider problem

by harnessing such codes and understanding them from the “inside out” as time and needs

demand. Clearly the PIC case study described here has lent itself well to harnessing and live-

programming. An important consideration for scientific programming in general might be what

program architectures and design patterns can be used to enable easy and efficient harnessing

by a live-programming environment in the way that has been demonstrated here.

Our codes are open-source and available online, both the original skeleton codes8 and the

“live” version in Extempore.9 While we have tried in this paper to give a feel for the “practice”

of live programming, the static nature of paper publication is a natural limitation. We strongly

encourage readers to watch the complementary video10, which we hope conveys more of the

“experience” of live programming.

Acknowledgments

We would like to acknowledge the support of Professor John Taylor, Director of eResearch

and Computational Sciences at the Australian Commonwealth Scientific and Industrial Research

Organisation (CSIRO), and the Particle in Cell and Kinetic Simulation Center (PICKSC),

funded by the US National Science Foundation, NSF Grant ACI-1339893, for their support of

this work.

8http://picksc.idre.ucla.edu/software/skeleton-code
9https://github.com/digego/extempore/tree/master/libs/external/pic
10https://vimeo.com/126577281

Live Programming in Scientific Simulation

14 Supercomputing Frontiers and Innovations

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic

language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

2. C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. CRC Press,

October 2004.

3. Viktor K. Decyk. Skeleton Particle-in-Cell Codes on Emerging Computer Architectures.

Computing in Science & Engineering, 17(2):47–52, March 2015.

4. P.E. Dewdney, P.J. Hall, R.T. Schilizzi, and T.J.L.W. Lazio. The square kilometre array.

Proceedings of the IEEE, 97(8):1482–1496, Aug 2009.

5. Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M. Livny,

L. Moreau, and J. Myers. Examining the challenges of scientific workflows. Computer,

40(12):24–32, December 2007.

6. James Goodwill and Wesley Matlock. The swift programming language. In Beginning Swift

Games Development for iOS, pages 219–244. Springer, 2015.

7. John Hules and Jon Bashor. Report of the 3rd DOE Workshop on HPC Best Practices:

Software Lifecycles. US Department of Energy, 2009.

8. C Lattner and V Adve. LLVM: A compilation framework for lifelong program analysis &

transformation. In International Symposium on Code Generation and Optimization, 2004.

CGO 2004., pages 75–86. IEEE, January 2004.

9. Paulett C Liewer and Viktor K Decyk. A general concurrent algorithm for plasma particle-

in-cell simulation codes. Journal of Computational Physics, 85(2):302–322, December 1989.

10. Marta Mattoso, Jonas Dias, Kary A. C. S. Ocaña, Eduardo Ogasawara, Flavio Costa, Felipe

Horta, Vı́tor Silva, and Daniel de Oliveira. Dynamic steering of HPC scientific workflows:

A survey. Future Generation Computer Systems, 2014.

11. Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the design of the

r language. ECOOP 2012–Object-Oriented Programming, pages 104–131, 2012.

12. Jurriaan D Mulder, Jarke J van Wijk, and Robert van Liere. A survey of computational

steering environments. Future Generation Computer Systems, 15(1):119–129, February 1999.

13. Travis E. Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

14. The Rust Programming Language. http://www.rust-lang.org.

15. Andrew Sorensen. Extempore. http://extempore.moso.com.au/.

16. The Computer Languages Benchmark Game. http://benchmarksgame.alioth.debian.

org/.

B. Swift, A. Sorensen, H. Gardner, P. Davis, V. Decyk

2015, Vol. 2, No. 4 15

