
Networked Livecoding at VL/HCC 2013

Ben Swift, Henry Gardner
Research School of Computer Science

Australian National University
Email: ben.swift@anu.edu.au

Andrew Sorensen
Institute for Future Environments

Queensland University of Technology
Email: a.sorensen@qut.edu.au

Abstract—Network connectivity offers the potential for a
group of musicians to play together over the network. This
paper describes a trans-Atlantic networked musical livecoding
performance between Andrew Sorensen in Germany (at the
Schloss Daghstuhl conference on Collaboration and Learning
through Live Coding) and Ben Swift in San Jose (at VL/HCC)
in September 2013. In this paper we describe the infrastructure
developed to enable this performance.

I. A NETWORKED LIVECODING ARCHITECTURE

The networked performance at VL/HCC 2013 involved
two artists: Ben Swift in San Jose, California and Andrew
Sorensen in Germany, as well as an audience at each location.
Both artists were livecoding using the Extempore programming
language [3].

Although audio and especially video streams require high-
bandwidth connections, advances in the technology and eco-
nomics of such connections have made the prospect of net-
worked musical performance (NMP) increasingly attainable in
recent years [1].

In general, a NMP system can choose to use either
a “signal-over-the-wire” (SotW) or a “control-over-the-wire”
(CotW) approach [4]. In a SotW system, each musician gen-
erates an audio signal, and the NMP system streams each of
these audio signals over the network. In the CotW approach,
lightweight control data (such as MIDI [5], [6] or even source
code [7]) is sent over the network, and this data is turned into
an audio signal at each end using an appropriate synthesis
engine.

The VL/HCC performance setup used the CotW approach.
The control data—in the form of the source code written by the
livecoding artists at each end—was sent over the network to
be evaluated independently at both ends as shown in Figure 1.

Code sharing was performed at an editor level through
a custom Emacs [8] plugin. While the collaborative musical
performance could have taken place if the code was not shared
(so that each audience could only see their local livecoder’s
code) there is a strong commitment in the livecoding com-
munity to project the code for the audience. Because of this,
the audiences at each end could see and hear both livecoders
together, in order to appreciate the full extent of the live
musical collaboration over the network.

The performance took place over a hotel internet connec-
tion in San Jose, through an SSH tunnel to the Dagstuhl con-
ference centre in Germany. The SSH tunnel through Australia
was used to provide a public IP address for each artist to
connect to, which is often difficult to obtain on a hotel network

due to network address translation (NAT). By forwarding the
appropriate ports on this server (which had a known global
IP), we were able to ensure that the connection between the
computers could be made regardless of the local network setup.
The server was located in Australia for convenience (it is a
server owned by Ben Swift). In principle a server which was
closer to either endpoint could have been used, but in testing
it was clear that the bandwidth and latency of this setup was
acceptable.

All of the software involved in this networked performance
is available on GitHub at https://github.com/digego/extempore
under an MIT licence.

II. BENEFITS AND LIMITATIONS OF THIS NETWORKED
LIVECODING ARCHITECTURE

In livecoding a great deal of the performance involves the
triggering of code asynchronously: scheduling musical events
at some future time based on beat and tempo. This allows the
sidestepping of the round-trip latency problems associated with
the SotW approach, since as long as the code arrives before
it is scheduled, the result is perfect (local) synchrony. Musical
events which are meant to happen simultaneously happen on
the same audio sample, which allows collaboration not just on
a beat level but even sample-level phasing effects reminiscent
of Steve Reich.

Livecoding is an excellent candidate for a CotW archi-
tecture because the control data is so rich—the code being
written by each livecoder during the performance is written
in a Turing-complete programming language (in the case of
this performance, this language was Extempore [3]). This
is in contrast to a MIDI-based CotW approach. MIDI is in
general limited to the control of a few specific parameters
such as pitch, velocity, and duration. In livecoding, however,
the remote livecoder can write create a program to generate
any audio stream at the other end.

From an information-theoretic perspective, sending only
pitch/velocity/duration over the wire (as in MIDI) means that
there needs to be sophisticated infrastructure at the receiving
end, for example a software synthesizer or sampler. In the
livecoding CotW paradigm, the livecoder can send the whole
synthesizer over the wire as source code, as well as the
subsequent pitch/velocity/duration commands to play it. This
gives the networked performers a great deal of control over the
audio stream generated at each end, while retaining the low
bandwidth requirements of CotW networked performance.

These techniques were used by Ben and Andrew in the
VL/HCC–Dagstuhl performance, where Extempore’s support

2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4799-4035-6/14/$31.00 ©2014 IEEE 221

Extempore

Wadern,
Germany

San Jose,
USA

(+ 1 2)

(bind-val myPI double
3.1415)

(bind-func circle_area
 (lambda (r)
 (* (pow r 2.0)
myPI)))

Ben’s
code

(bind-func circle_area
 (lambda (r:double)
 (* (/ 256.0 81.0)
 (pow r 2.0))))

(println 'area=
 (circle_area
5.0))

Andrew’s
code

(bind-func circle_area
 (lambda (r:double)
 (* (/ 256.0 81.0)
 (pow r 2.0))))

(println 'area=
 (circle_area
5.0))

Andrew’s
code

(+ 1 2)

(bind-val myPI double
3.1415)

(bind-func circle_area
 (lambda (r)
 (* (pow r 2.0)
myPI)))

Ben’s
code

Extempore

VL/HCC audience

Dagstuhl audience

SSH
Server

Canberra,
Australia

local code execution

remote code execution

audio signal

source code mirroring

Andrew

Ben

Fig. 1. The VL/HCC networked livecoding architecture. Both Andrew and
Ben performed using the Extempore livecoding software package, and each
artist was connected “live” to both their local Extempore process and the
remote process at the other location, through an SSH tunnel in Canberra,
Australia. In this way, each artist had their code evaluated both locally and
remotely, and the audio signal was rendered at each location.

for real-time sample-level audio manipulation and signal pro-
cessing offered the the freedom to work at a MIDI-like “note
level” or a lower “signal level” as desired.

There are some limitations to the NMP approach we used
for the VL/HCC performance. The most challenging one is
dealing with different data and computational environments
at each end. Since each artist’s code was evaluated in both
their local and the remote Extempore process simultaneously,
then these environments need to be as similar as possible. If
a particular piece of code was evaluated successfully at one
location but triggered an error at the other (for example due
to a missing audio sample file at one end) then the executed
code will have had different results at each site. Similarly, if
the performance is happening on a laptop at one end and a
high-powered server at the other, then code which may run
smoothly on the server may glitch and cause dropouts on the
laptop. These challenges can be mitigated by ensuring that
the system and computational environments are similar at all

network endpoints.

The other limitations of this approach to networked live-
coding are minor. The parallel execution means sacrificing
some determinism, for example the pseudo-random number
generator (PRNG) will in general give different results at each
end. Again, it is possible to code defensively to deal with
this limitation, only using these functions in situations where
identical output at each end is not necessary.

III. CONCLUSION

The networked performance at VL/HCC 2013 was a great
success, both from a technical and artistic perspective. Mark
Guzdial (Georgia Institute of Technology), a Dagstughl semi-
nar attendee, described the performance as

. . . an amazing duet between Andrew Sorensen at
Dagstuhl and Ben Swift at the VL/HCC conference
in San Jose using their Extempore system. [2, p164]

The NMP architecture we describe here was designed
specifically for livecoding—it is not easily applicable to a
transatlantic jam session with conventional instruments. How-
ever, there is a growing class of interactive and collab-
orative networked performances where the combination of
asynchronous musical scheduling and lightweight control data
representation does allow for the CotW setup described in this
paper.

We have continued to use the NMP software infrastructure
developed for the Dagstuhl–VL/HCC performance in other
networked performances. We hope to continue to refine these
techniques to allow even more seamless and engaging net-
worked livecoding performances in the future.

REFERENCES

[1] J. Lazzaro and J. Wawrzynek, A case for network musical performance.
New York, New York, USA: ACM, Jan. 2001.

[2] A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber, Eds., Col-
laboration and learning through live coding, ser. Dagstuhl Reports.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing,
Germany, Jan. 2014, vol. 3.

[3] A. Sorensen. Extempore. [Online]. Available: http://extempore.moso.
com.au/

[4] A. Carôt, P. Rebelo, and A. Renaud, “Networked Music Performance:
State of the Art,” in Audio Engineering Society International Conference.
Audio Engineering Society, 2007.

[5] A. Brown, S. Dillon, T. Kerr, and A. Sorensen, “Evolving Interactions:
Agile design for networked media performance,” OZCHI ’09 Proceedings
of the 21st Annual Conference of the Australian Computer-Human
Interaction Special Interest Group: Design, 2009.

[6] G. Hajdu, “Quintet.net: An Environment for Composing and Performing
Music on the Internet,” dx.doi.org, Mar. 2006.

[7] J. Rohrhuber, A. de Campo, R. Wieser, and J. van Kampen, “Purloined
Letters and Distributed Persons,” Music in the Global Village Conference
(Budapest), Jan. 2007.

[8] R. M. Stallman, “EMACS the extensible, customizable self-documenting
display editor,” ACM SIGPLAN Notices, vol. 16, no. 6, pp. 147–156, Jun.
1981.

222

