
Coding Livecoding
Ben Swift

R.S. Computer Science, CECS
Australian National University

ben.swift@anu.edu.au

Andrew Sorensen
Inst. Future Environments
Queensland University of

Technology
a.sorensen@qut.edu.au

Michael Martin
R.S. Finance, Actuarial

Studies and Applied Statistics
Australian National University

michael.martin@anu.edu.au

Henry Gardner
R.S. Computer Science, CECS
Australian National University

henry.gardner@anu.edu.au

ABSTRACT

Livecoding is an artistic programming practice in which an
artist’s low-level interaction can be observed with sufficiently
high fidelity to allow for transcription and analysis. This pa-
per presents the first reported “coding” of livecoding videos.
From an identified corpus of videos available on the web,
we coded performances of two different livecoding artists,
recording both the (textual) programming edit events and the
musical effect of these edits. Our analysis includes a novel,
transition-matrix visualisation of the textual and musical di-
mensions of this data to create a “performer fingerprint”. We
show how detailed transcriptions of livecoding videos can be
made which, we hope, will provide a foundation for further
research into describing and understanding livecoding.

Author Keywords

Creativity Support Tools; End-user Programming

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User
Interfaces – Evaluation/methodology

INTRODUCTION

Livecoding is a “new direction in electronic music and
video” [1] in which the performer(s) write computer code
in front of an audience to generate music and visuals in real
time. The act of programming is part of the performance,
and performers are exhorted to “show us your screens. . . code
should be seen as well as heard” [1]. Academic treatments of
livecoding can be found in [3, 2, 8] and elsewhere.

In spite of its revolutionary manifesto, livecoding is now well
over a decade old and has become part of the establishment
of computer music. Allied forms of musical performance
are electronic music, minimalist music, and jazz. Modern,
software-enabled DJ/VJ performance is a more mainstream

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04 ...$15.00.
http://dx.doi.org/10.1145/2556288.2557049

relative of livecoding, and there has been recent interest in
the “top-down” HCI design of software interfaces for DJ/VJ
and other similar artistic practices [4, 5]. In contrast to
these interfaces, the genesis of livecoding was as a reaction
against the strictures of “designed” interfaces. In the words of
Collins et. al: “Not content to submit meekly to the rigid in-
terfaces of performance software. . . (livecoding artists) work
with programming languages, building their own custom soft-
ware, tweaking or writing the programs themselves as they
perform.” [3]

The documentation and sharing of livecoding performances
takes the form of performance videos, together with (often in-
distinct) images of projected computer screens. A few artists
have taken to producing direct-feed screencasts of livecod-
ing performances, whose quality is sufficiently high to permit
manual ‘coding’ of these performances after the fact. The ex-
istence of these higher-quality videos motivates the following
questions:

1. Can a “bottom-up”, edit-level analysis of livecoders’ ac-
tivity reveal insights into the into the way that livecoding
performances evolve in real time as the artists write com-
puter code to create and manipulate music and video?

2. Are there ways in which differences in “musical style” be-
tween different artists can be represented from this interac-
tion data?

PROCEDURE

In this note we describe a systematic study of a collection of
livecoding videos, each of which was manually annotated to
produce a time-stamped transcript. Each video in our corpus
satisfied the following requirements:

• We restricted ourselves to complete, musical livecoding
pieces rather than shorter ‘tech-demo’ style videos. This
also ruled out livecoding videos where the artistic outcome
was visual, rather than auditory, a choice which was made
not as a value judgement but rather to simplify the compar-
isons between pieces in our analysis.

• One norm in livecoding is to start performances from a
blank editor screen [7]. We restricted our focus to livecod-
ing videos that started in this way for the sake of bringing
out common aspects of these performances. This restric-
tion meant that the start-up phases of the videos contained

Session: Enabling Interactive Performances CHI 2014, One of a CHInd, Toronto, ON, Canada

1021

a large number of insertion events.
• To look for elements of style across multiple works by the

same artist, we required that the artist have at least four
eligible videos to be included in the corpus.

Identifying a comprehensive corpus of livecoding videos is
a challenge in its own right. While livecoding has a semi-
official home at toplap.org, there is no canonical list of
videos there. There are other websites1 which attempt to
maintain curated lists of livecoding videos, but none of these
lists are comprehensive. In the end, our list of potential videos
was assembled from livecoding artists’ individual websites,
Google, YouTube, and from our knowledge of the TOPLAP
community. Our restrictions meant that our videos were di-
rect screen recordings.

We selected the videos of two artists: Andrew Sorensen2

(AS) and Ben Swift3 (BS), who between them made up
approximately three quarters of all the videos which met
the criteria described above. In addition, both of these
artists used the Scheme-based livecoding software environ-
ment Impromptu [8]. This allowed for a simplified coding
schema and facilitated an easy comparison between the two
artists. In the end our dataset comprised 13 livecoding videos,
with a total running time of approximately three hours. A full
list (including URLs) of the videos analysed to produce the
final dataset is given in Table 1.

Coding

Each of the selected videos was analysed frame by frame to
produce a series of time-stamped event codes4 describing the
activity of the livecoder. We chose an event-level granular-
ity for these codes, since the framerate of the videos did not
always allow us to delineate individual keystrokes. Event
boundaries were determined by the times at which the source
code was syntactically correct. For example, if the livecoder
started to write a new function, that event was considered to
last until the function was complete (i.e. callable). When
editing existing code, smaller events were possible, such as
the changing of a literal value or the addition of a new clause
to a case statement.

Our coding schema had the following fields:

• timestamp: the start time of an event (in seconds), and
(optionally) the end time of that edit, for edit events longer
than one second.

• textual meaning: was an event an insertion, deletion or
evaluation, or was it a quick edit, (such as changing an
integer literal 60 to 70)?

• musical meaning: did an edit affect the pitch, rhythm, dy-
namics or timbre of the music, or all of the above (as in the
introduction of a new instrument)?

1such as http://livecoding.co.uk/doku.php/videos
2
http://vimeo.com/andrewsorensen

3
http://vimeo.com/benswift

4In this paper we use the term “code” to describe both the textual
source code of a program and the (event code) label given to a par-
ticular event in the “coded” transcript.

• instrument: in most cases it was possible to delineate dif-
ferent musical instruments/voices in the piece (e.g. bass,
drums, piano melody, piano accompaniment).

• comment: a free-form text field for any salient features of
the edit which were not captured in the other fields.

The rationale for this coding schema was to keep the cardi-
nality of each coding “dimension” as small as possible, and
to allow the interactions of these dimensions (4 textual codes
× 6 musical codes) to provide richness and complexity in the
data.

Event coding was completed by a professional composer,
with tertiary degrees in both music composition and com-
puter science. Although this person had some livecoding ex-
perience, they were not the creator of any of the pieces stud-
ied. While determining the textual meaning of each edit was
fairly straightforward, the musical and instrument fields re-
quired subjective judgements, and we also provided a free-
form “comment” field to enable notes to be recorded about
possible ambiguities and other issues. It was possible to pro-
vide multiple musical or instrumental codes for a given tex-
tual edit, e.g. when the modification of a global parameter
affected both the pitch and dynamics of the piece.

RESULTS

In total, 2577 edit events were recorded in the dataset, with
an average of 15 edits/min. Figure 1 shows the way that the
distribution of these events changed over the course of each
piece by breaking each piece into three equal segments: the
beginning (first third), middle (middle third) and end (final
third) of each piece.

In the textual dimension data exhibits a shift from having a
large number of insertion events (writing new code) at the be-
ginning of each piece towards primarily evaluation and quick
edit events at the end of the piece. Both artists exhibited this
trend. Musically, however, there are different edit propor-
tions between the artists: AS favoured dynamic (loudness)
edits, while BS preferred rhythmic ones and edits which af-
fect whole instruments (the “all” musical category).

Figure 2 shows the frequency of some of the different edit
types between pieces, separated into the beginning-middle-
end time chunks. This figure shows the same trends as Fig-
ure 1, with code insertion events early in the piece and eval-
uations and quick edits in the latter stages. AS makes notice-
ably more dynamic (musical) edits in the latter stages of his
pieces—a trend not evident for BS.

Transition matrices

Transition matrices (Figure 3) can help us look for “signa-
tures” of artists in terms of their edit transitions (the se-
quence of edit events) in both the textual and musical di-
mensions. This is a new contribution of this work which ex-
pands on the use of transition matrices for chord sequences
by Nichols et. al. [6]. A key aspect of our approach is the
creation of a temporal sequence (beginning-middle-end) of
transition matrices to show the evolution of an artist’s activity
within their pieces.

Session: Enabling Interactive Performances CHI 2014, One of a CHInd, Toronto, ON, Canada

1022

Session: Enabling Interactive Performances CHI 2014, One of a CHInd, Toronto, ON, Canada

1023

Figure 3 (left-hand side) shows the textual transition matri-
ces for each artist. Both artists exhibit a progression from
insertion events (bottom left-hand corner) to quick edits and
evaluations (top right-hand corner) as each piece develops.
Also visible in the transition matrix is the ‘quick edit → eval-
uation’ (and back again) loop in state space. This suggests
that the quick edit and evaluation events in the latter stages
of a piece tend to alternate, rather than being contiguous in
time. This observation makes sense given the nature of the
Impromptu software environment, in which changes to the
source code must be evaluated before they take effect.

Figure 3 (right-hand side) shows the same transition matri-
ces, but this time from a musical perspective. Interestingly,
there is much less similarity between the artists. Over time,
AS’s transition matrix becomes increasingly dominated by
‘dynamic edit → dynamic edit’ self-transitions, while BS’s
matrix remains diffuse, even in the later stages of his pieces.
This suggests that, from a musical perspective, AS starts out
making code edits which affect many different aspects of the
music, but in the later stages of his pieces he ‘zooms in’ on
dynamic edits, adjusting the already-running musical voices
up and down in dynamic range as dictated by his aesthetic
goals. In contrast, BS continues to jump around more in the
musical nature of his edits, although there seems to be a slight
trend towards the on-axis (i.e. self-transitions) values in the
transition matrix in the final third of his pieces.

DISCUSSION

Figures 1, 2 and 3 all show visible differences in edit activ-
ity over the course of the pieces. The most interesting aspect
of the analysis is that while there are recognisable patterns in
both the textual and musical dimensions of the edits, only in
the musical dimension do there seem to be recognisable dif-
ferences between the artists (see Figure 3). While it might
seem, on the surface, that a textual programming language
may provide too broad an interface to the musical power of
the computer, it is interesting that the differences between the
artists are not so visible based on their activity on a purely
textual level, but come out clearly when considering the mu-
sical meaning of their edits.

A potential future use for the sequence of local transition ma-
trices is the detection of natural change points in live-coded
pieces, through both the textual and the musical activity of
the livecoder.

CONCLUSION

This paper has presented the first reported coding and event-
level analysis of a decade-old artistic endeavour which is cen-
tred around programming at a computer interface. Although
our data set is small, being limited by the available web pres-
ence of livecoding, we have examined the works of two differ-
ent livecoding artists with a one second temporal resolution
along both the programming (text editing) and musical di-
mensions. We have also demonstrated the utility of transition
matrices for visualising stylistic differences between artists.

The possibilities of this data collection approach are exciting,
and we acknowledge that this note presents only a prelim-
inary exploration of these possibilities. Future work could

extend our study through the instrumentation of the program-
ming interface to enable automatic data collection, refining
the coding scheme (e.g. breaking ”quick edit” into subtypes),
exploring the relationship between the textual and musical di-
mensions of the scheme, and also to examine and contrast
livecoding with other source code editing activities. As more
data is collected, we hope to be able to answer with more
confidence questions about the nature of style and the spe-
cific patterns of interaction which characterise livecoding.

ACKNOWLEDGEMENTS

The authors would like to thank Matt Rankin for his contri-
bution to this work.

Artist Title Vimeo ID
AS Strange Places 2503257
AS Dancing Phalanges 8732631
AS A Study in Keith 2433947
AS Jazz Ensemble Study 15679078
AS Variations on a Christmas Theme 18008372
AS A Christmas Carol 8364077
AS Day of the Triffords 2735394
AS Orchestral 2579694
AS Antiphony 2503188
AS A Study in Part 2434054
BS I am an Elder Brother 7525775
BS Archtop 6940393
BS A Few Days Late 7196155
BS Fear of Sucking 7039223

Table 1. The livecoding videos which were coded for analysis. Each

video can be seen online at https://vimeo.com/<VimeoID>

REFERENCES
1. TOPLAP Manifesto.

http://toplap.org/wiki/ManifestoDraft.

2. Blackwell, A., and Collins, N. The programming language as a musical
instrument. Proceedings of PPIG05 (Psychology of Programming

Interest Group) (2005).

3. Collins, N., McLean, A., Rohrhuber, J., and Ward, A. Live coding in
laptop performance. Organised Sound 8, 03 (2003), 321–330.

4. Hook, J., Green, D., McCarthy, J., Taylor, S., Wright, P., and Olivier, P.
A vj centered exploration of expressive interaction. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, ACM
(2011), 1265–1274.

5. Hook, J., McCarthy, J., Wright, P., and Olivier, P. Waves: exploring
idiographic design for live performance. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, ACM (2013),
2969–2978.

6. Nichols, E., Morris, D., and Basu, S. Data-driven exploration of musical
chord sequences. In IUI ’09: Proceedings of the 14th international

conference on Intelligent user interfaces, ACM Request Permissions
(Feb. 2009).

7. Nilson, C. Live coding practice. Proceedings of the 7th international

conference on New interfaces for musical expression (2007), 112–117.

8. Sorensen, A., and Gardner, H. Programming with time: cyber-physical
programming with impromptu. In OOPSLA ’10: Proceedings of the

ACM international conference on Object oriented programming systems

languages and applications (2010), 822–834.

Session: Enabling Interactive Performances CHI 2014, One of a CHInd, Toronto, ON, Canada

1024

