ICLC 2020
Proceedings of the 2020 International
Conference on Live Coding

5th - 7th 2020
University of Limerick - Ireland

2

UNIVERSITY OF

LIMERICK

LLLLLLLLLLLLLLLL

Contents

PAPERSI 4

[I'he Live Looml 5
|Cibo v2: Realtime Livecoding A.l. Agent)| 20
|IRe-coding the Musical Cyborg| 32
|Designing for a Pluralist and User-Friendly Live Code Language Ecosystem with Semal 41
ILive Coding From Scratch: The Cases of Practice in Mexico City and Barcelonal 59
IDisabled Approaches to Live Coding, Cripping the Code| 69
|Live coding in Western classical music| 78
ILive Coding Tools for Choreography: Creating Terpsicode| 87
IThe Mégra System - Small Data Music Composition and Live Coding Performance] 95
|Poly-temporality Towards an ecology of time-oriented live coding] 105

CONTENTS 3

|Liveness, Code, and DeadCode in Code Jockeying Practice| 117

ILive Coding Procedural Textures of Implicit Surfaces| 132

POSTERS 146

IRIPPLE: integrated audio visualization for livecoding based on code analysis and machine learning| 146
|Filling In: Livecoding musical, physical 3D printing tool paths using space filling curves| 150
|[Functional Live Coding vs. DAWs and VSTs| 159
Vi P rcor Tive Port [Evaluation 163
|Live coding the code: an environment for ‘meta’ live code performance) 177
INSTALLATIONS 188
|Anatomies of Intelligence] 188
190
190
192
WORKSHOPS 196
ILive Code Language Design with Semal 196
Introduction to music-making in Extempore] 197

Hex Osc Shift Mod 198

CONTENTS

|[Approaches to Working in a Flexible Network, Reimagining the Ensemble.|

|Open, high and low: writing classes in SuperCollider|

|Open, high and low: writing classes in SuperCollider|

|Giving live to autonomous agents|

LUNCH CONCERTS

LVENING CONCERT |

|IProgramme Notes |

EVENING CONCERT 11

|IProgramme Notes 11|

199
202
203

205

207

211

211

217

217

223

223

CONTENTS

CSIS °D 2 %
i ' (D @ il 3 [RISH WORLD ACADEMY
Department of o - Y OF MUSIC AND DANC
Computer Science DMARC interaction design centre Fa I lte [re la nd N vos agos ceol
& Information Systems Digital Media & Aris
Ris itk B e b

UNIVERSITY OF Q LET O ~ shannon Region S@UND

LIMERICK - -(»)- CONFERENCE & SPORTS%UREAU UNIVERSITY murf th"el;;g,?;

OLLSCOIL LUIMNIGH EEEE‘E.EFHSEFE:N?FEEE C ONCE RT HALL pro Aulio

LIMERICK
ICLC2020

INTERNATIONAL CONFERENCE ON LIVE CODING

WED 5th - FRI 7th 2020
University of Limerick - Ireland

Local Committee

Dr. Giuseppe Torre [Conference & Paper Chair]

Digital Media and Arts Research Centre

Dept. of Computer Science & Information Systems
University of Limerick

giuseppe.torre@Qul.ie

Dr. Neil O’Connor [Performance Chair]

Digital Media and Arts Research Centre

Dept. of Computer Science & Information Systems
University of Limerick

neil.oconnor@ul.ie

Dr. Nicholas Ward [Workshop Chair]

Digital Media and Arts Research Centre

Dept. of Computer Science & Information Systems
University of Limerick

nicholas.ward@ul.ie

Dr. Nora O’Murchu [Installations Chair]

Digital Media and Arts Research Centre
Interaction Design Centre

Dept. of Computer Science & Information Systems
University of Limerick

nora.omurchu@ul.ie

International Steering Committee

Alex McLean (Deutsches Museum)

Shelly Knotts (Durham University)

Thor Magnusson (University of Sussex)

Luis Navarro Del Angel (McMaster University)
Kate Sicchio (Parsons the New School for Design)
Graham Wakefield (York University)

Alexandra Cardenas (Independent)

Jesus Jara (Independent)

giuseppe.torre@ul.ie
mailto:neil.oconnor@ul.ie
mailto:nicholas.ward@ul.ie
mailto:nora.omurchu@ul.ie

Chair Forewords

I hope you do not mind if I use this small page as a personal memoir.

You are about to read the work of a relatively small yet fast-growing
international community of talented technologists and amazing per-
formers. ICLC 2020 is only the fifth edition of the International Con-
ference on Live Coding. It was, without the slightest doubt, an im-
mense pleasure to host it at the University of Limerick.

I recall three days of intense panel discussions, workshops and amaz-
ing performances (some literally jaw-dropping!). More importantly I
recall a relaxed and friendly atmosphere where everybody was gen-
uinely interested in the works of peers and eager to share and learn.

I also recall that just two weeks after the conference, Europe (as well
as many other countries) went into lockdown for COVID-19. Then we
began to appreciate the meaning of being together. The importance
of a "we” before an "I”, to borrow from Jean-Luc Nancy. A ”we”
unmediated by digital technology where the roots of digital are to be
found and where all discourse on digital eventually returns - and that
applies to live coding too.

Go n-éirf an t-adh leat

Giuseppe Torre

Additional Material

Emma Cocker’s keynote address can be found here (recommended!):
https://www.youtube.com/watch?v=0Cu0h0Z3bw8|

Recordings of all papers and performances can be found here: https:
//www.youtube.com/channel /UCN-9RKW_izkIUMHOe(60H2g

ICLC Conferences pages https://iclc.toplap.org/

Live Coding Repository https://toplap.org/

Thanks!

My most sincere thanks go to all the attendees of ICLC2020 for having
generously shared knowledge and their artistic practices.

All the students volunteering: Matthew Reynold, Ocean McCormack,
Walt Neid, Ciara O’Brian, Emer O’Reilly, Rian Stephen,

Lastly, and without any doubt not least(!), the most sincere thanks
to the audiovisual technical team: Roisin Berg, Lianne Daly, Tony
Irwin, Alan Dormer, Dave O’Brien, Colm McGettrick.

Disclainers

All copyrights remain with the authors. That includes typos, gram-
matical errors and so on.

https://www.youtube.com/watch?v=oCuOhOZ3bw8
https://www.youtube.com/channel/UCN-9RKW_izkIUMH0eQ60H2g
https://www.youtube.com/channel/UCN-9RKW_izkIUMH0eQ60H2g
https://iclc.toplap.org/
https://toplap.org/

PAPERS

e N
-— a......._... h‘?

ey
Bed

T N R
.1%‘(@;"‘5)‘1‘“(3"591 L -\h, “-M
play < 4 B>, "”"Wlug OGN g ¢ h‘“

10 b g o 4 g
w05 5o ‘Ing

h‘ hnmu‘ inmk“

:’d»y.,
‘e
M»a

(c) 2020 Robin Parmar

The Live Loom

Alex McLean
Deutsches Museum
alex@slab.org

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This paper introduces the Live Loom, a warp-weighted hand-loom
augmented with computer control, using a visual live coding envi-
ronment. The traditional weaving technique of colour-and-weave in-
terference patterns are explored, revealing the digital, computational
nature of weaving that predates the invention of discrete mathemat-
ics as it is commonly understood. Early results of live coding such
patterns, in the process of learning how to weave, is shared.

Introduction

Live coding is the exploratory practice of changing code while it runs.
A live coder uses a programming language as a live interface to a
running process, and therefore its inputs and outputs. This allows
the programmer to participate in the performing arts, for example to
create live coded music, video or dance. Live coding may be used
to refer to any use of code in any kind of live situation, but for the
purposes of this paper, we will focus on live coding as live improvisa-
tion, where code is written without a fixed aim, often from a notional
‘blank slate’.

Weaving is a textile craft, where parallel threads known as the
warp are held under tension, allowing a second set of threads known
as the weft to be passed over and under the warp threads to create
a textile fabric. Different textile techniques produce different results;
for example in terms of structure, weaving and knitting have very
little in common with each other.

This paper investigates how live coding and weaving can be
brought together, looking for ways to ground the contemporary prac-
tice of live coding in ancient craft. In the following I take a loosely
auto-ethnographic approach, introducing the Live Loom, and its use
both for understanding weaving and reflecting on the shared history
of live coding and textile practice that it might reveal.

mailto:a.alex@slab.org

Background

Connections between textile craft and computation have been very
well explored in the digital arts and beyond. However, as David Mc-
Callum notes, such work often does not engage with structure or long
history of textiles, but instead treats the three dimensional structure
of weave as a simple grid or raster (McCallum, 2018, 0.3.1). McCal-
lum’s own work explores the notion of ‘glitch’ in media art and how
it transfers to textile structures, but given that the latter has devel-
oped over a far longer period than the former, it is not surprising that
along the way he finds much that media art can learn from textiles.
In the weaving industry, the technology of computer-controlled looms
is of course also well developed. In the present work we are interested
in analogies with live coding and ‘hands on’ computer control. Such
interaction is not afforded by most machine looms, where the human
weaver is replaced by a machine. However, hand-operated computer
controlled looms do exist, and the present work is much inspired by ex-
periments I conducted on the TC1 loom in Textiles Zentrum Haslach,
Austria (McLean and Harlizius-Kliick, 2018).

Stitching Worlds is a recent, far reaching project imagining a world
where textiles more overtly formed the basis of contemporary elec-
tronic technology (Kurbak, 2018). Works produced from this project
include the “Embroidered Computer” with Irene Posch and collab-
orators, a working 8-bit computer embroidered in gold. This work
integrates textile electro-mechanical relays into a fabric, demonstrat-
ing that a feminist approach to linking textiles with computing goes
far beyond metaphor - textiles can compute.

Feminist alternative history

Although not the primary focus of the present work, comparing the
contemporary practice of live coding with the ancient craft of hand-
weaving has potential to support and extend a somewhat obscured
feminist history of computation. Feminist perspectives on computing

and weaving are hardly new, a well-known reference point being Sadie
Plant’s influential text “Zeros and Ones: Digital Women and the New
Technoculture” (Plant, 1998). However, the once dominant role of
women in computer programming has been steadily erased since the
1960s and ’70s (Hicks et al., 2017), and despite recent efforts, gender
diversity in software engineering is an ongoing problem.

As a relatively new interdisciplinary practice that tries to reject
hierarchieﬂ live coding offers an opportunity to build a gender di-
verse culture, and this opportunity is a core topic across live coding
research and practice (Armitage, 2018). Turkle and Papert related
gender to the plurality of relationships between coder and program
observed in children, describing a more conversational approach to
coding, with mid-course corrections rather than fixed-goals as brico-
lage (Turkle and Papert, 1990, p. 136). This approach is certainly
evocative of live coding, with the suggestion being that it is one likely
to be favoured by girls, but discouraged by instructors in favour of
more fixed design processes.

Armitage (2018) brings together female perspectives on live cod-
ing in the Algorave scene, relating one interviewee’s experience of live
coding “... as a way of working through their daily life, adding struc-
tures to it and providing functions for being. These lived patterns
merge with their daydreams and expressions of colour and geometry
to form her live coded visuals.” (Armitage, 2018, p. 39). This again
evokes Turkle and Papert’s bricoleur, and indeed the ancient social
and intellectual function of weaving in building a personal cosmos
(Harlizius-Kliick and Fanfani, 2017).

Setting aside the Jacquard machine

The Jacquard machine is a well known device for individual con-
trol of threads in the weaving process, classically through the use
of punch cards. From across computer science and popular culture,
the Jacquard machine is often invoked as part of an ‘origin story’ of

1See for example the Algorave Guidelines - https://github.com/Algorave/guidelines

https://github.com/Algorave/guidelines

computation, following Charles Babbage’s mention of it as an influ-
ence. However, the Jacquard machine does not do computation, it
is merely a mechanism for accepting input data. The Jacquard ma-
chine therefore brings a fundamental misunderstanding to the topic
of weaving and computation which is very difficult to work around.

Yes, weaving is computational, and yes, the Jacquard machine
allowed data to be fed into that computation. But the same compu-
tational nature is present in all weaving, including traditions of hand
weaving developed over millennia (Harlizius-Kliick, 2017). The com-
putation was already there before Jacquard, and by helping automate
the weaving process, his device only takes humans further away from
that computation. So while Jacquard’s machine is often described
in terms of the beginning of the relationship between weaving and
computing, the opposite is true - it was an end.

So let’s try to wipe the Jacquard machine from our minds in the
following discussion, not because the technology isn’t interesting and
useful, but because the discussion around it is so full of misunder-
standing. Once we do that, we are able to see that such machinery
did not introduce any computation to weaving - the computation was
there already. As will become evident in this paper, the computation
is not in the machine, but in the weave.

Introducing the Live Loom

Having set one mechanism aside, I introduce another. The Live
Loom is a warp-weighted loom, with solenoids attached so that warp
threads may be individually picked from software. First, I explain the
technology of the warp-weighted loom, and later explain the electro-
mechanical attachments on the Live Loom.

The primary purpose of any loom is to hold a group of parallel
threads, the warp, in parallel and under tension, allowing weft threads
to be woven over and under the warp threads. The warp-weighted
loom is an ancient technology, where tension comes from the effects
of gravity, by attaching weights to the bottom of the warp threads.
By contrast, on modern looms warp threads are generally horizontal,

and held in tension through mechanical means. The essential compo-
nents of a warp-weighted loom are therefore very simple, consisting
of a frame holding two horizontal bars in place, one to hang the warp
from, and another below separating alternate threads, keeping them
in order, and creating a potential gap (using weaving terminology, the
natural shed) for the weft to pass through by default. The simplicity
of the loom is also its advantage - the simpler the loom, the fewer con-
straints and therefore more possibilities there are to weave complex
structures on it.

The weaving process involves a weft thread going over and under
the warp threads, following one of a very large range of possible pat-
terns, for example creating tabby, twill or satin structures (Emery,
2009, see also Fig. . Selective warp threads are pulled forward,
creating a new gap or shed between the pulled and non-pulled warp
threads, through which the weft travels in a straight line. When the
warp threads are returned, the weft is trapped inside, and the next
shed is prepared.

Weaving technology

The Live Loom is shown in Figure[2] Although it carries a contempo-
rary ‘maker’ aesthetic due to its laser cut plywood construction, at its
core, it is a hand-loom following an ancient warp-weighted loom de-
sign. The additional electro-mechanical parts do not replace the core
functions of the loom, but rather augment them in order to allow
threads to be selected using a computer language as well as directly
by hand. The hardware and software designs are available as open
hardware/free software (McLean, 2019).

The Live Loom is fitted with a number of solenoids (currently
sixteen), mounted on two axes to double the number that could oth-
erwise fit in a given space. The solenoids are controlled by an arduino
micro-controller, via a bank of relays. When activated, each solenoid
will push against a stick, which pulls its corresponding warp thread
forward via a string. In this paper we refer to the wooden stick and
string collectively as the heddle. With each solenoid controlling one

(g)

Figure 1: Fundamental weave structures, shown with binary ‘draft’ structure (top), simulated weave with light warp and dark weft (middle),
and simulated weave with alternating light and dark warp and weft (bottom). These different structures lead to different physical properties and
therefore uses (Emery, 2009).

= TEE—

I

il I
o= | ! —_

W “eomzyeionins,,

Figure 2: The Live Loom, a warp-weighted loom, with live-codeable heddles via solenoid actuators.

warp thread, the resulting weave is currently constrained to sixteen
threads across.

Crucially, these solenoid movements are not designed to fully cre-
ate a shed. Instead this movement only ‘offers up’ warp threads to
the human weaver-coder, who then pulls the threads further by hand.
This seems like a deficiency of power and leverage, but is not; this
‘offering up’ means the weaver can choose whether or not to pull each
thread. This is particularly useful at the edges of the weave, where
adjustments are often required to produce a good fabric. The sugges-
tive nature of instructions sent via the solenoids reminds of the live
coding choreographic work of Sicchio (2014). We can think of this
process as not directly live coding a textile weave, but instead sug-
gesting bodily movements to produce the weave. When live coding
people rather than computers, it is humane to respect their ability to
exercise creativity and agency in the way they interpret instructions
given to them.

Computing a weave

Before introducing a language for live coding the loom, lets first look
closer at the computational nature of weaving itself, focussing on
colour and weave effects. Such effects bring together different dimen-
sions or systems. Firstly, the structure of the weave - the arrangement
of ups and downs in the grid created by the meeting points of warp
and weft. Secondly, the colour patterning of warp and weft threads.
The visible colour at a particular point of the weave then depends on
two things - whether the warp or weft thread is visible (i.e. whether
the weft is under or over the warp) and what colour that thread is.
The result is an interference pattern between these two systems, cre-
ating a deterministic, logical outcome that is nonetheless very difficult
for the layperson to predict.

As a simple example of this, consider the weave structure shown
in Fig. known as a draft pattern. The black-and-white grid shows

the pattern of weft ups and downs represented as white and black
squares respectively. For example, the first row shows a weft thread
going under one warp, over two warps, and repeat. The second row
shows a weft thread going under two warps, over one warp, and then
repeating.

There are also coloured squares at the top and bottom, showing
the pattern of warp and weft thread colours respectively, in this case
both alternating between light green and dark blue. In order to find
what colour will be visible, we look at the weave structure. For black
squares, we know the warp colour is shown, so follow the column up
to find its colour, otherwise we follow the row to the leﬂﬂ From this
we can see that where warp and weft meet with a matching colour
(in this case, every other cell in a checkerboard pattern), the visible
colour cannot be changed by the structure. This is analogous to the
Moire effect seen by placing one net over another, with the visible
result being the interference of the upper and lower structures.

If we plot out the result of this interference between thread colour
and weave structure, we arrive at the image shown in Fig. [BD] This
result will be surprising to a layperson, not only is the vertical and hor-
izontal stripe of warp and weft not visible, but the diagonal runs in a
different direction to the underlying weave structure. This experience
will be familiar to those who have explored algorithmic interference
patterns in livecoding software such as TidalCycles or Hydra, simple
inputs often create unexpected, more complex results.

Finally, Fig. shows a fabric woven using this structure and al-
ternating white and blue threads, created by a workshop visitor on
the Live Loom. The same features hold in the weave itself, although
are not too well defined, due to interaction between the threads, and
variation in density. The left and right edges are a mess, because in
practice such a structure simply cannot be woven at the edges. Weft
threads generally travel from left to right for one row, and from right
to left on the next. Therefore, if a weft ends a row over a warp, and
begins the next row also over a warp, then it will not be woven at that

2In practice, there are other variables which change which colour thread is visible, for example if weft threads are tightly packed, warp threads are hidden completely.

(a) Draft Pattern

(b) Result

(c¢) Actual result

Figure 3: A draft pattern and the result of virtually and actually weaving it.

point. A more experienced weaver would make consistent changes at
the edges (known as the selvage), such as adding plain weave bor-
der, to ensure a coherent result. The above description of colour and
weave effects should give us pause for thought. Weaving predates
computer programming and indeed discrete mathematics in general,
but nonetheless is a discrete, logical and therefore digital computa-
tional system. Furthermore, any hand-loom affords exploration of
this system. When considering the computational nature of weaving
then, we must be careful not to be dazzled by the machinery or elec-
tronics of industrial and contemporary weaving technology, when it
is the ancient technology of the threads themselves that provides the
environment for computation.

Coding the draft

We have already seen that weaving drafts are a form of code, which
can compute unexpected results when interpreted. Such weaving
drafts are themselves binary, digital images, developed well before
electronic digital computers. It is therefore straightforward to add a

further level of abstraction by using a programming language to create
a draft. The purpose of doing so is to create patterns from patterns,
making a rich space to explore weaving and gain tacit knowledge both
about how it works, and its relation to computation as it is more
conventionally understood in the context of programming languages.
Each such layer of abstraction takes us further away from the mate-
rial, but just as live coding of music brings together the experience
of coding and listening, the Live Loom brings together coding with
seeing and touching.

Figure [fa] shows the current version of the Live Loom coding in-
terface. The code is shown on the left, using the visual live coding
interface Texture (McLean and Wiggins, 2011), originally designed as
an exploratory interface for the TidalCycles environment, but here
re-purposed for a system designed for discrete, binary draft patterns.
The set of available symbols and keywords are on the top right, which
may be dragged into the code using a mouse. On the bottom right a
window into the draft pattern is shown, with the row most recently
being sent to the Live Loom marked with blue squares on either side.
Finally the row number is written below, which in this case is higher

than the number of rows shown, as the previous rows have scrolled
off the top. The weaver-coder can manipulate the code with a mouse,
while using arrow keys on a keyboard to step forwards (or backwards)
through the draft, sending each warp lift to the loom to be actuated
by the solenoids and woven by the weaver.

Perhaps most notable is what is not shown in the software inter-
face. In particular, simulation of thread colour (such as that shown in
Fig 3) could easily be included, but is not, indeed thread colour is not
dealt with at all in the software, only on the loom. Keeping colour on
the loom takes focus away from any simulation on screen and places
it in the ‘ground truth’ of the material. After all, colour is only one
quality of thread, alongside thickness, material, ply, tightness and di-
rection of twist, tension and density of warp and weft, and so on.
Trying to simulate all of these continuous variables on-screen would
be an insurmountable task, and focussing the software on the singular
task of planning the discrete structure of ups and downs works very
well.

It is important to recognise that although the binary grid of
a weaving draft is contained in two dimensions, the structure it
describes is very much three dimensional. Indeed certain two-
dimensional patterns will result in more than one fabric, one on top
of the other, creating the possibilities of double weave structures.3

Live Loom language

The language currently used by the Live Loom is the pure functional
programming language Haskell, using its list datatype. Standard
Haskell lists are ‘lazily evaluated’, which means that infinitely long
lists can be represented and calculated on demand. A weave struc-
ture is simply represented by a one dimensional list of Boolean values,
where true and false stands for up and down (or if you prefer, over
and under) respectively.

Listed in Table below, the current number of functions for
composing draft patterns on the Live Loom is small but already pro-
vides a very rich space of possibility. The weaver-coder begins with

a list of ups and downs, then applies functions to transform that list
and/or combine it with other lists. The result is a language interface
that produces surprisingly complex results from simple elements.

name description

(] An empty list

: Adds a value to a list

up / down Keywords representing the boolean values
of up (over) and down (under)

cycle Repeats a list forever

backforth Reverses every other row

offset n Offsets each row from the last, by the given
number of threads

shift Shifts each row by one thread

rev Reverses each rows

every n f Selectively applies function f to every nth
row

invert Turns all ups to downs, and vice versa

zipAnd a b Combines two lists, resulting in up when
both lists have an up

zipOr a b Combines two lists, resulting in up when one
or both lists has an up

zipXOr a b Combines two lists, resulting in up when
only one list has an up

Table 1.1: The values, functions and operators available in the Li-
ve Loom code interface.

Working at the Live Loom

Figure 4] shows the Live Loom software interface next to the woven
outcome. This starkly shows the perceptual gap between code, draft
and weave, with little visual correspondence despite the structures of
the draft being a logical outcome from the code, and the weave being
that of the draft. The code is represented as a branching tree, the

visual interface directly showing the branching normally represented
by parenthesis (McLean and Wiggins, 2011). This particular code
creates the draft pattern shown, which perhaps has the appearance
of vines growing up a wall. When this structure interferes with the
alternating colours of warp and weft, the final result appears in the
weave as (to my eyes) legs leaping into the air (Fig. [4b]).

It is humbling that this leap from draft to weave constitutes an-
cient knowledge, demonstrating mathematical logic that predates our
conventional view of mathematics. This brings historical grounding
to the analogous logical leap from code to draft, shown alongside.

It is worth noting that adding an additional level of abstraction
to the drafting of weaves is not novel. Indeed, it is very common in
weaving for patterns of threads to be grouped into a number of shafts,
where weave structure is created by patterns for lifting these shafts.
The binary grids we consider in the present paper are in such cases
drawn down from a draft composed of of threadings (how the threads
are grouped into shafts) and treadlings (how the shafts are lifted over
time). In a sense, the live coding language introduced in this paper
provides a flexible, interactive alternative to lift plans.

Music of the loom

The solenoids are not triggered at once but in sequence, to even out
the use of electrical power, with less needed to hold a solenoid than
to move it. The most time-efficient way to do this would be to trigger
the ‘up’ threads, pulling the warps one after the other, evenly spaced
in time. However I have found it much more useful to include ‘down’
threads in the timing, so each row takes the same amount of time to
actuate, no matter how many warps are being pulled forward. This
gives a clear rhythm to each row, where the ‘clunk’ of a solenoid is
heard for an up, and a silent pause is heard for downs. This rhythm
breathes life into the weaving process, making it easier to orient myself
in the pattern and spot errors, as I compare the rhythm I hear with
the threads I see. It also brings rhythmic enjoyment to the repetitive
nature of weaving, compelling me forward into the next row.

The solenoids have a particular ‘duty cycle’, meaning that it is
best not to keep them activated for too long, otherwise they may
overheat. Once a solenoid is activated, the micro-controller holds it
in place, giving enough time for the weaver to place a hand on the
heddles and pull selected warp threads forward. Although born from
a technical need, these few seconds add an additional sense of regu-
lated timing to the process of weaving. However if the heddles are
not caught in time, the weaver-coder can repeat the lift with a quick
press of the up arrow key. The weaver can also unweave by stepping
backwards through the structure with the left arrow, removing rather
than adding the weft by hand, for each step.

Live Coding

So far we have discussed action, but not live reaction. We have looked
at coding the loom with a draft, and coding the coding of the loom
by introducing a language for composing a draft, but we haven’t dis-
cussed live coding - the changing of code in response. Let’s do that
now.

Changing patterns

Live coding of music is often characterised by comparatively slow,
continuous changes. Changes are heard immediately, but the com-
plexity of music grows with the code. The experience of the Live
Loom is rather different, where a small change tends to have a large,
global effect, but each change takes time to become apparent; rows
are only produced at a rate of a few per minute, and it might take
two or three repeats of a pattern before its nature can really be felt.
These big differences from small edits are due to multiple levels of
interference, between code, draft and weave.

A change from one pattern to the next also presents a problem of
transition, where one pattern might not sit well with the next, poten-
tially creating a physically uneven structure, with undesirable floats
(see below). It can take a disturbed row or two before the weave set-

tles into the next structure. There are certainly parallels here with is probably best done at the loom, adjusting each shed at the heddles
live coding music and indeed music in general, where a sudden change by hand.

can be jarring, without a careful transition. Managing this transition At this slow pace of change though, we are in the domain analo-

w

cycle
rev

backforth

cycle
: Jup™: 4down™[]

invert

backforth

cycle

(a) Code (left) and resulting draft structure (bottom right)

'._-:‘

(b) Resulting weave

Figure 4: Live Loom software interface and the woven result

gous to slow coding rather than frenzy of an algorave. Where each
decision has long term consequences, there is a need for careful con-
sideration. Furthermore in weaving we work with physical thread,
rather than with the metaphorical thread of time as with live coding
of music. This means that we are able to undo a weave in a way
that we cannot undo music, and change our minds. By unweaving,
the weaver, like the mythological figure of Penelope, resists external
forces.

Embracing error

Live coders are known for embracing error, and so it is fortunate that
it is so easy to produce a draft which is unweavable. For example,
there is the problem of ‘floats’, lengths of unwoven fibre created wher-
ever there is a contiguous series of either ups or downs in the warp or
weft direction. Indeed, where there are only either ups or downs in
a given row or column, that thread will not be woven into the fabric
at all. In response to a problematic draft, the weaver can do one
of three things — change the code to look for a more weavable draft,
ignore activated heddles or pull additional ones to change the weave
directly, or just attempt to weave the pattern anyway.

In the draft shown in Figure the draft looked unweavable to
my naive eyes, due to the pairs of identical rows within it. Where
this happens, pairs of consecutive wefts are passed through the same
shed. I thought this would result in a mess, but out of curiosity went
ahead anyway to produce the weave shown in Fig. I found that
with care the wefts would still run parallel and stay in order, largely
maintaining the ‘correct’ structure on-screen. Furthermore, because
the repeat in the draft consists of an odd number of rows, and I was
weaving with two different wefts, the wefts would alternate between
either travelling through the same shed from one side to the other
together, or in opposite directions. By embracing this ‘error’ I ar-
rived at a (to me) surprising, pleasing, and subtle result, although
there are undoubtedly many such surprises on the way to becoming
an experienced weaver, and I have far to go.

Weaving the edit

Decisions at the Live Loom are taken slowly, responding to problems
and opportunities as they arise in the weave. Figure [6a] shows the
starting point for another improvised weave, a draft appearing to be
a kind of hatched vertical pattern, drifting downwards to the left,
with lines sometimes joining or breaking. When it came to weaving
this structure (see Fig. , two features slowly became apparent —
the pervasive pairs of ups and downs on the weft, offset from one row
to the next, seemed to result in the warp spreading out vertically,
and therefore partially hiding the warp at points where I expected it
to be visible. This created an a partly weft-faced weave. However,
some long floating threads were present on the warp direction, and the
weft-facing only accentuated the presence of these long warps lying
on top.

After weaving 20 rows of this pattern (Fig. , I hit a snag - the
pattern of repeating warp floats drifted until they sat at both edges
of the fabric, seen in Fig. [6D] I realised that having floats at the
selvage would cause the textile to lose its otherwise uniform width,
and I decided I neither wanted this effect or to change it by hand; I
had been enjoying working the two wefts together at the selvage, and
felt that having a warp float there would create a mess. So instead I
changed the structure to that seen in 6¢, adding code to invert every
other row, as an effort to break up warp floats. However, after a few
rows of weaving the edit (Fig. to the point in the interface shown
in Fig. [6d] I realised that by breaking up some floats, I had only cre-
ated new ones. Another tweak shown in Fig. [Ge] this time changing a
number from 3 to 1, seemed to fix it. However once I started weaving
I realised the floats were still there, but now so long that they took
up the whole edge and so were no longer visible on-screen!

This time I decided having such long floats was an interesting
enough challenge to pursue, and embraced this compounded error as
an opportunity to experiment more with creating extra binding points
at the selvage by hand. I continued with this structure for 53 rows,
up until the point seen in Fig. [6] The resulting weave shown in 7c¢

did indeed turn out to be interesting, the resulting weave curiously between white and blue, over a steep diagonal. This time, the result-
appearing to be much more coherent than the draft pattern. As the ing motif reminded me of Quipu knots. The resulting experimental
long floating warp threads stepped one warp to the left, they cycled weave we have seen in Fig. [7| charts an experiment in three stages.

slow
cycle
rev
backforth
invert
: i

zipAnd down

3

5
ZipOr

(a) Live Loom code and draft showing pairs of identical rows.

Figure 5

.

2 f

¢

i ! I '@ ‘~; |‘§ “;% :

(b) The resulting weave, showing pairs of wefts
that have travelled through the same shed.

offset

“double

“backforth

cycle

Jup™====;

every /2]

offset §e

~double

backforth

0

offset J°

“double

“backforth

cycle

double

“backforth
cycle

flup’ i

()

Figure 6: Screenshots of Live Loom interface at six different points in the weaving of fabric (see Fig.

up

2

4
zipAnd
zipXor

4

.
cycle

rev
backforth
invert

up down
2 3

a 5
zipAnd zipOr
zipXor

invert
offset A
“double

“backforth

cycle

Winvert
offset
“double
“backforth

cycle

(f)

up

2

4
zipAnd
zipXor

*
cycle

rev
backforth

up

2

4
zipAnd
zipXor

HH

First, the initial serendipitous discovery of a) a weft-faced structure
with warp floats. Then transition b) as I searched for a solution to
a perceived problem at the selvage. Finally a longer section c), with
some manual experimentation at the selvage. The resulting fabric
tells a story of its making, from a starting point, to prevarication
and decision, with further learning points charted along the edge as I
learned to deal with the selvage.

Conclusion

This paper has explored how the principles of live coding may apply to
the warp-weighted loom. However, in connecting a live coding pattern
language to the practice of weaving, we find that weaving is already
abundant with computational patterns, and in particular that histor-
ical drafting techniques already demonstrate a similar computational
abstraction from the resulting woven textile, as code does from me-
dia in the live coded performing arts. Nonetheless by adding another
layer of abstraction to that which has been present in weaving since
ancient times, and using solenoids in communicating movement from
the code to the weaver, the Live Loom allows creative exploration of
woven patterns in a way that is sympathetic to the repetitive, yet
cognitive nature of hand-weaving. There is much to follow the pre-
liminary work introduced here. This paper has purposefully focussed
on understanding of weave from the perspective of live coding, taking
care to have respect for this technological craft that has developed
since Ancient times. It could be however that weaving practice could
benefit from such a computer language interface, for example replac-
ing the current relatively time-consuming process of uploading bitmap
images whenever the pattern is changed on a TC2 loom. Introducing
‘real’ trained weavers to the Live Loom would undoubtedly also turn
up valuable criticism of its design. Furthermore while some hands-
on workshops have already been conducted, more involved long-form
work with workshop participants are needed to explore the possi-
bilities of the loom in helping people explore the complexities and
possibilities of hand-weaving.

Figure 7: Result of improvised weave edits shown in Figure |§|

Acknowledgements

This research is conducted by the PENELOPE project, with funding
from the European Research Council (ERC) under the Horizon 2020
research and innovation programme of the European Union, grant
agreement No 682711.

References

Armitage, J., 2018. Spaces to Fail in: Negotiating Gender, Commu-
nity and Technology in Algorave. Dancecult: Journal of Electronic
Dance Music Culture 10, 31-45. https://doi.org/10.12801/1947-
5403.2018.10.01.02

Emery, 1., 2009. The Primary Structures of Fabrics: An Illustrated
Classification, 01 edition. ed. Thames; Hudson Ltd, New York, N.Y.

Harlizius-Kliick, E., 2017. Weaving as binary art and the alge-
bra of patterns. TEXTILE Cloth and Culture 15, 2017, 176-197.
https://doi.org/10.5281/zenodo.3342554

Harlizius-Kliick, E., Fanfani, G., 2017. (B)orders in Ancient
Weaving and Archaic Greek Poetry. https://doi.org/10.5281/
zenodo.340005

Hicks, M., Aspray, W., Misa, T.J., 2017. Programmed Inequality:
How Britain Discarded Women Technologists and Lost Its Edge in
Computing, 1 edition. ed. MIT Press, Cambridge, MA.

Kurbak, E. (Ed.), 2018. Stitching Worlds: Exploring Textiles and
Electronics. Revolver Publishing, Berlin.

McCallum, D.N.G., 2018. Glitching the Fabric: Strategies of new
media art applied to the codes of knitting and weaving.

McLean, A., 2019. Kairotic/liveloom: Solenoid two. https:
//doi.org/10.5281/zenodo.3346032

McLean, A., Harlizius-Kliick, E., 2018. Fabricating Algorithmic
Art, in: Parsing Digital. Austrian Cultural Forum, London, UK, pp.
10-21. https://doi.org/10.56281/zenodo.2155745

McLean, A., Wiggins, G., 2011. Texture: Visual notation for the
live coding of pattern, in: Proceedings of the International Computer
Music Conference 2011. pp. 612—-628.

Plant, S., 1998. Zeros and Ones: Digital Women and the New
Technoculture, New Ed edition. ed. Fourth Estate, London.

Sicchio, K., 2014. Data management part III: An artistic frame-
work for understanding technology without technology. Media-N:
Journal of the New Media Caucus 10.

Turkle, S., Papert, S., 1990. Epistemological pluralism: Styles
and voices within the computer culture. Signs 16, 128-157.

https://doi.org/10.12801/1947-5403.2018.10.01.02
https://doi.org/10.12801/1947-5403.2018.10.01.02
https://doi.org/10.5281/zenodo.3342554
https://doi.org/10.5281/zenodo.840005
https://doi.org/10.5281/zenodo.840005
https://doi.org/10.5281/zenodo.3346032
https://doi.org/10.5281/zenodo.3346032
https://doi.org/10.5281/zenodo.2155745

Cibo v2: Realtime
Livecoding A.I. Agent

Jeremy Stewart
Rensselaer Polytechnic Institute, Troy, NY
stewajH@Qrpi.edu

Shawn Lawson
Rensselaer Polytechnic Institute, Troy, NY
lawsos2@rpi.edu

Mike Hodnick
mike@kindohm.com

Ben Gold
bgold.cosmos@gmail.com

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Cibo v2 is a live-coding artificial intelligence (AI) agent that per-
forms TidalCycles and is trained on recorded performances by several
TidalCycles performers. This paper presents an entirely new architec-
ture from the original Cibo agent for realizing autonomous performing
agents.

Introduction

Cibo v2 represents an entirely new architecture from the previously
presented Cibo live-coding agent (Stewart and Lawson, 2019; Stewart,
2019, Cibo: Safeguard II). Cibo v2 performs TidalCycles (McLean
and Wiggins, 2010; McLean et al, 2019) code in a live-coding set-
ting for musical and sound performance. Cibo v2 is constructed with
autoencoder and variational autoencoder architectures as its founda-
tions, with additional neural network modules governing performance
progression and variable production. Cibo v2 trains faster and is
trained in a number of steps, allowing for a greater degree of flexibil-
ity during the development process. The resulting performance agent
produces TidalCycles code that is highly reminiscent of the provided
training material, while offering a unique, non-human interpretation
of TidalCycles performances. Cibo v2 is trained using recordings
of performances by several human performers, including Mike Hod-
nick, Ben Gold, and Jeremy Stewart. For the first time, the agent
in performance hints at each of these influences. Furthermore, the
manner by which the agent is constructed allows for visualizing the
organization of training material, allowing us to peer into the learned
Al-representation of these recordings. Finally, because each human
contributor performs with a unique sample corpus, a sample analysis
tool set is offered to allow the Cibo v2 agent to effectively substitute
samples based on sonic features.

mailto:stewaj5@rpi.edu
mailto:lawsos2@rpi.edu
mailto:mike@kindohm.com
mailto:bgold.cosmos@gmail.com

Pre-Agent Technical Overview

The first step to creating the Cibo agent include recording TidalCy-
cles performances by human performers and tokenizing the TidalCy-
cles code to prepare it for training purposes. The following section
outlines the metholodies and software developed to satisfy these func-
tions.

Recording Tidalcycles(Sublime JENSAARAI)

Jensaarai, a custom text editor written in NodeJS with Electron, was
integral to the initial version of Cibo. Jensaarai created text record-
ings of all edits and code executions that a human performer would
make. These recorders were fed into Cibo for its training process.
When Cibo performs, Cibo’s edits and code executions are made vis-
ible in the Jensaarai editor. Cibo v2 uses exactly the same process,
with several differences in the text editor. Human performers making
text recordings and Cibo v2 performances use Sublime Text with the
Sublime Jensaarai plugin (Lawson, 2019). Using this plugin format
reduced numerous issues that were occurring when the userbase of
Jensaarai grew beyond the primary developers and Cibo. The func-
tionalities of the Sublime Jensaarai plugin are nearly identical to the
standalone Jensaarai application.

LEXER/TOKENIZATION

Tokenization of TidalCycles code is carried out using the PLY library
(Beazley, 2018), much like was described in “Cibo: An Autonomous
TidalCycles Performer” (Stewart and Lawson, 2019). The lexer dic-
tionary contains 248 discrete tokens, including all of those available
in the TidalCycles documentation (All the Functions - TidalCycles),
as well as additional tokens for custom function definitions. Vari-
able values are stored in a second vector (represented as the “values”
vector in Figure , and are replaced with INTEGER, FLOAT, and
STRING tokens.

We then convert this single token representation into an n-gram
encoding, combining up to four tokens into a single integer repre-
sentation, as seen in Figure [2 where the tokens [0, 30, 17, 28] are
combined into a single token: 40. Only n-gram tokens occurring in
the training material are preserved, resulting in a dictionary of 11267
discrete tokens—much fewer than the possible 2484 tokens. These
n-gram tokens are used as the input and output of the AutoEncoder
architectures described below.

Agent Architecture

Input Vector ¢——

Hidden state

decoder,
decoder,

49 121 15 401 387 570 309 ‘

token output |

Figure 3: CiboV2 performance-ready architecture. Input vector is a
three-dimensional vector denoting the latent space coordinates which
are to be decoded by two stages of decoder module, resulting in n-
gram output

The Cibo agent is trained, first, to construct compact encodings of
TidalCycles code via an autoencoder and a variational autoencoder.
The training of these neural networks produces a three-dimensional
latent space: TidalCycles code can be converted into a point in this
latent space, and, inversely, coordinates in this latent space can be
decoded into usable TidalCycles code. The Cibo agent performs by
traversing the three-dimensional latent space using a recurrent neu-
ral network (RNN), producing TidalCycles code at each step. The

d1$n“5[2~1~[971"#s “ house_kick " #cut “ 4 "
d1$ n “[I|[|I[~ 1 ~ [[T]|T|]1 " #s “|S|" #cut “|T|"
Eigﬁ:ﬁng 0 30 17 28 12(2]4|2|14 5 14 4)2]12|5 12 18 129 12|19]12 18 112 12|2|12 1
ii!ﬂfuﬁs O 0 0 0|50 1|2/0 0 0 0|9|(7({0 0 0 @ 0|50 0 @ 0|40 0

Figure 1: TidalCycles code is input into the lexer, which lexes the code in discrete tokens. Integer, Float, and String tokens are indicated as such,
while preserving the values associated with these tokens in a second vector.

RNN module, seen at the top of Figure [3] is trained to traverse the
resultant latent space in a manner consistent with the TidalCycles
recordings used for training. Importantly, this module outputs nor-
mal distributions which are sampled, resulting in non-deterministic
behavior. The basic performance-ready architecture is represented in

Figure “Decoderl”, seen at bottom, is the first component to be
trained, followed by “decoder2”. These two modules together convert
a 3-dimensional latent space vector into an n-gram token sequence
which can be converted to TidalCycles code. The following sections
will detail each of the neural network components of the Cibo agent.

Emﬁ;ﬁm; @ 30 17 28||12 2 4 2([14 5 14 &2 2 5 12|18 129 12 19|12 18 112 12|12 12 1
R p— [
P A4-gram 4ol |121| |15/ |4a01|[387| [570 [309
; tokens |
Figure 2: Tokens are combined into 4-gram representations.
Autoencoder

Once n-gram token sequences are produced by the lexer, the first stage
of the Cibo agent must convert these variable-length sequences into a
fixed-length representation. In order to accomplish these, we employ
an autoencoder architecture, seen in Figure

token input 40 121 15 401 387 570 309

I
Embedding layer

encoder,

| out | | hidden state

v

Latent,

<
|

v

tokenoutput| 40 121 15 401 387 570 309 |

decoder,

Figure 4: Training the first stage autoencoder neural network. Vari-

able length input (n-gram token input, at top) is converted to a fixed-

length latent representation (Latentl), and then decoded back to a @
variable length output (token output, bottom).

The token input passes, first, through an embedding layer, which
converts the discrete, integer token notation into a floating-point vec-
tor in a higher-dimensional space. The output from the embedding
layer is sent to a bidirectional recurrent neural network (BiRNN)
which reads the sequence both forward and backward, producing two
outputs: a variable-length out vector and a fixed-length hidden state
vector. The out vector is discarded. The hidden state vector is passed
through a fully connected (dense) layer in order compress the encod-
ing further, resulting in a vector that contains 500 values: Latent;
(This Latent; vector will be used to train the subsequent VAE mod-
ule, discussed in the next section). The latent vector is then fed into
the decoder module, which is trained to convert it back to the origi-
nal input sequence, thus token input and token output are the same
sequence.

Variational Autoencoder

With the first stage autoencoder complete and trained, we construct
a variational autoencoder (Kingma et al, 2013) to further compress

Latent]

encoder, | (Linear Layer— ReLU) |

| (Linear Laver— ReLU) ‘

| (Linear Layer— ReLlT) |

| (Linear Layer—s ReLU) |

| (Linear Layer— ReLU) |

| (Linear Layer— ReLU) |

| (Linear Layer) l | (Linear Layer) |

decoder, :

| (Linear Layer— ReLU) |

| (Linear Layer— ReLU) |

[(Linear Layer— ReLlT) |

| (Linear Layer— ReLU) |

| (Linear Layer— ReLU) |

| (Linear Layer— ReLU) |

Latent]

Figure 5: Training the second stage variational autoencoder (VAE).
The learned latent representation from stage 1 (seen in Figure [4)) is
used as input and output here. The encoder module produces a nor-
mal distribution which is sampled before being sent to the decoder,
resulting in non-deterministic behavior.

the latent representations of TidalCycles code. The variational au-
toencoder (VAE) is constructed by alternating linear (fully connected)
layers with ReLU (Rectified Linear Unit) activation functions. The
encoder, labeled encoders in Figure |5, outputs two vectors which are
used as the mean and standard deviation of a normal distribution
(seen at center of Figure . This normal distribution is then sampled
and input into the decoder (decoder2) which reconstructs the Latent, During the development of the Cibo agent and many training ex-
vector. periments, many different hyperparameter settings we tested, includ-

ing different numbers of layers, different numbers of hidden features
between each layer, and different activation functions. Figure [f ac-
curately represents the architecture as it is currently in use, with 7
layers in each the encoder and decoder. The Latentl input/target
vector contains 500 features, while the innermost latent representa-
tion—the result of sampling the normal distribution (and the input
into decoder2)—contains 3 features.

The variational autoencoder provides two strengths in this imple-
mentation. First, because the encoder (encoder2) produces a normal
distribution which is then sampled, the VAE is non-deterministic and
retains a degree of stochasticity in its final execution. Additionally,
the resulting latent space produces gradual changes in the output, i.e.,
the latent space, while highly complex and knotted, can be smoothly
traversed for continuous subtle changes in output.

Latent Space Traversal
*

Once the latent space has been constructed by training the autoen-
coder and subsequent VAE (discussed above), all training recordings
are passed through the encoders, producing a normal distribution for
each training sample. Once these latent normal distributions are gen-
erated, we can visualize the latent space (see Figure @ The three
TidalCycles contributors—blindelephants (Jeremy Stewart), kindohm
(Mike Hodnick), and bgold (Ben Gold)—are signified through differ-
ent colors, with each point representing an execution of a line or block
of TidalCycles code. Figure [6] was produced via t-SNE using the
latent-space vectors produced by the encoders (Maaten et al, 2008).
There are clear regions in this visualization, with groupings of the
same color in some areas, and mixing in others.

With this latent space constructed by the two encoder neural net-
works, all training recordings were encoded, resulting in a sequence
of normal distributions for each recording. More simply put, with
the latent space constructed as in Figure [0 it is possible to trace
pathways through this space which represent a given performance.

These sequences were used to train a recurrent neural network (using
a LSTM architecture; Hochreiter, 1997) in an autoregressive fashion.
The resulting model will trace a pathway through the latent space (in
Figure @ in a manner based on the training recordings, at each step
producing a vector which can be sent to the two decoder modules and
output as TidalCycles code.

Generating Token Values

‘ 93017 2812 242145 14 422512 18 12912 19 12 18 112 12 2 12 1 ‘

v
‘ di $n “ 1[I ~1~[T1TTI1IT]1" #s “s " gcut “ 1" ‘
Integers). .. Foats | .. Stmes) ..
:| BiRNN ‘ . :‘ BiRNN . : BiRNN |I
' v Pl v i v :
.| Linear Layer ‘: .‘ Linear Layer HE Linear Layer |.
.......... .I.........-.' - :.........:I...........
v vy v
‘ di $ n “ |5/ [(2]~ 1 ~ [|9[|7|1 " #s “ |5 " #cut “|& " ‘
house_kick

Figure 7: Generation of token values takes place by 3 neural networks,
one for each variable type: Integer, Float, and String

The token sequence that is generated by the agent modules dis-
cussed above will contain Integer, Float, and String tokens, without
yet specifying their values. The last step in the Cibo agent’s gen-
erative process is to produce these variables. It does so with three
neural networks, each dedicated to one of the variable types. The

10.0 10.0 === blindelephants
“] m kindohm
.’:.; Sewee, ; l%n ——
o ° .
%o ® o g @ .
%% 0398 o Do .\ F 4 A ®
W i
7.5 4 e o o %% @ oo, 7.5 1
[°* [L ° L) X ~t’ °
S ‘.’ °© b ° 1 « & °* W .'= o e
KJ ..'.‘q L] . ®ocg, ‘: .'l..i) °® . e
¢ ¢ KA) 2 L) g ®
04 W= § 2 1Y Y Y %) 5.0 1
% . ¥
2.5 25 |
0.0 - 004
55 -2.5
-5.0 4 50
75 -75
~10.0 4 ~10.0
“10.0 75 —5.0 25 00 25 50 75 10,0 ~10 s 0 5 10 5 20

Figure 6: The latent space produced by training, visualization aided by t-SNE processing. Each point represents a single execution of a TidalCycles
line or block. The two subfigures represent the same space, rotated by 90 degrees around the y-axis.

TidalCycles token sequence is read into a bidirectional recurrent neu-
ral network (BiRNN) which generates a variable length output (equal
to the sequence length). Indices of the given variable type are then
passed through a linear layer which outputs a single value. If the
variable type is float, the output is used directly; integer type will
result in the output being truncated and used. If the variable is of
string type, the value will be used to look up a sample name from an
available dictionary which contains all currently available samples.

Sound Analysis-Based Substitution

TidalCycles and SuperDirt make using one’s own sample library
very straightforward. = While recording performances to use for
training the Cibo agent, each contributor used a unique sample
library—potentially containing a combination of publicly available
sound samples (such as those included with SuperDirt) and samples
created by each individual artist. While the agent is trained in a man-
ner that preserves all of these unique sample names and possibilities,
there is no guarantee that all of these samples will be available at the
time of performance. Therefore, we developed a small tool set (Stew-
art, 2019, Sample Corpus Sound Analysis) to analyze each sample,
producing a fixed-size vector that represents various spectral features,
including: centroid, bandwidth, contrast, flatness, and rolloff; as well
as a full STFT (short time fourier transform) and CQT (constant Q
transform). This analysis tool uses the Librosa audio analysis library.
From each of these analyses (the length of which would be based on
the duration of the sample) a mean, standard deviation, and sum
vector was calculated. Thus, each sample is represented by a vector
containing 3360 values.

Audio analysis

encoder I (Linear Layer— ReLU) |

| (Linear Layer— ReLU) I

| (Linear Layer— ReLU) |

I (Linear Layer— ReLU) |

| (Linear Layer) |

I S £z

Latent vector

(Linear Layer— ReLU) |

, (Linear Layer— ReLU) |

| (Linear Layer— ReLU) |

| (Linear Layer— ReLU) l

I (Linear Layer) |

e — 3

Audio analysis

Figure 8: Dimensionality reduction performed on sample audio anal-
yses with an autoencoder.

An autoencoder neural network was constructed for the sake of di-

mensionality reduction, allowing us to effectively reduce each sample’s
representation from 3360 values to 300 values. This neural network,
seen in Figure 8] contains five layers in each the encoder and decoder.

204

104

~10

Figure 9: t-SNE visualization of the latent space produced by the autoencoder. Each point represents a single sample, with 13340 in all. The
two subfigures are of the same space, rotated 90 degrees on the y-axis. Z-depth is represented by color.

204

104

~104

-

.
LTI

o

YO &
Jﬁg"i&fz‘% it

e’

-10

204 204

10 4

~10

-20 -10 [+] 10 20 -20 -15 -10 =5 0 5 10 15

Figure 10: Here, the mapping is made more apparent. Red points indicate currently unavailable samples, while black points are those sample
currently available. The substitution method described here will map each red point to the nearest black point.

*

From here, a table is produced that maps all unavailable samples
to available samples, based on proximity of latent vectors. This table
is stored for use by the agent during performance. If the agent pro-
duces a sample name which is not in the currently available sample
library, this table is used for a simple name substitution.

*

All sample analyses (those containing 3360 values each) are pre-
served, allowing for recalculation of the substitution tables if the avail-
able sample library changes or if new training recordings, referencing
additional samples, become available.

Results

The Cibo v2 agent, as described above, performs as a live-coding per-
former using TidalCycles code in a self-directing manner based on
learned characteristics from training material. Video documentation
of the agent’s performance (Stewart, 2019, Cibo V2 Demo) demon-
strates Cibo v2’s ability to produce valid TidalCycles code in way
that is highly reminiscent of the contributing performers, while also
producing novel output that effectively blends between these influ-
ences.

Conclusions

Cibo v2 represents a novel implementation of artificial intelligence
(AI) and machine learning (ML) techniques to create an autonomous
live-coding performance agent. The construction of Cibo v2 around
autoencoder and variational autoencoder modules results in a faster
training process (than previous versions of the Cibo agent, specifi-
cally) and more robust sequence generation. Additionally, the ability
to visualize the learned latent space (Figure @ allows us to begin to
develop a better understanding and conceptualization of how Tidal-
Cycles performances might be organized and correlated.

References

All the functions — TidalCycles, viewed 25 September 2019, https:
//tidalcycles.org/index.php/All the functions

Beazley, D., 2018. PLY (Python-Lex-Yacc), viewed 25 September
2019, http://www.dabeaz.com/ply/

Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan,
N., Karaletsos, T., Singh, R.,

Szerlip, P., Horsfall, P. and Goodman, N.D., 2019. Pyro: Deep
universal probabilistic programming. The Journal of Machine Learn-
ing Research, 20(1), pp.973-978.

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term mem-
ory. Neural computation, 9(8), pp.1735-1780.

Kingma, D.P. and Welling, M., 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Lawson, S., 2019. Sublime Jensaarai, viewed 26 September 2019,
https://github.com/shawnlawson/SublimeJensaarai

LibROSA, viewed 25 September 2019, https://librosa.github.io/

librosa/

Loshchilov, 1. and Hutter, F., 2017. Fixing weight decay regular-
ization in adam. arXiv preprint arXiv:1711.05101.

Maaten, L.V.D. and Hinton, G., 2008. Visualizing data using t-
SNE. Journal of machine learning research, 9(Nov), pp.2579-2605.

McLean, A., et al, 2019. Tidal, viewed 6 December, 2019,
https://github.com/tidalcycles/Tidal

McLean, A., and Wiggins, G., 2010. Tidal—pattern language for
the live coding of music. Proceedings of the 7th Sound and Music
Computing Conference.

https://tidalcycles.org/index.php/All_the_functions
https://tidalcycles.org/index.php/All_the_functions
http://www.dabeaz.com/ply/
https://github.com/shawnlawson/SublimeJensaarai
https://librosa.github.io/librosa/
https://librosa.github.io/librosa/
https://github.com/tidalcycles/Tidal

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A.,

Antiga, L. and Lerer, A.; 2017. Automatic differentiation in py-
torch.

Stewart, J., 2019. Cibo: Safeguard II, viewed 26 September 2019,
https://vimeo.com/288889990/6d92fd1abb

Stewart, J., 2019. Cibo V2 Demo, viewed 26 September 2019,
https://vimeo.com/361567860/abac29e10f

Stewart, J., 2019. Sample Corpus Sound Analysis, viewed
26 September 2019, |https://github.com/BlindElephants/
SampleCorpus_SoundAnalysis

Stewart, J. and Lawson, S., 2019. Cibo: An Autonomous Tidal-
Cyles Performer.

Williams, R.J. and Zipser, D., 1989. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural computation,
1(2), pp.270-280.

https://vimeo.com/288889990/6d92fd1a55
https://vimeo.com/361567860/abac29e10f
https://github.com/BlindElephants/SampleCorpus_SoundAnalysis
https://github.com/BlindElephants/SampleCorpus_SoundAnalysis

Re-coding the Musical
Cyborg

Jacob Witz
golmechanics@gmail.com

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Where does the line between musician and instrument exist, and can
we redraw it? This paper defines the concept of the “musical cy-
borg:” a model for synthesizing human creativity and digital algo-
rithms to create sounds that would not otherwise be possible through
human production alone, rooted in the theories of thinkers like Juan
Atkins, Kodwo Eshun and Donna Haraway. It then explores several
different constructions of musical cyborgs, each demonstrating vari-
ous degrees of opacity and accessibility: Kindohm, digital influencer-
turned-musician Lil Miquela and Spotify-focused bands all rewrite the
boundaries between human and machine in ways which effect how
their work is consumed and replicated across digital networks. Most
notably, the musical cyborg of the live coder is invoked in order to
provide a potential model for future constructions of art-generating
cyborgs. The paper assesses the impact of various open-source live
coding projects in order to determine how these design choices can
be replicated across a broader network of artistic practices. It con-
cludes with the understanding that, while current technologies for
open-source collaboration only presently exist through generous ex-
ternal funding, they nevertheless provide an imaginative and achiev-
able vision for future projects, software and communities both within
and beyond music.

Introduction

The guidelines for hosting an Algorave, posted on GitHub as a
README file by British musician and academic Alex McLean, cau-
tions users against framing the event as a revolutionary practice. Af-
ter defining an Algorave as a live music show in which “most per-
formances/acts should involve code-based and algorithmic generation
of music and visuals, in a way that makes the code or algorithmic
process visible,” the guide advises newcomers that “Algorave is not
‘the future of dance music’, we’re just trying things out as part of a
much longer history” (McLean 2019). This longer history, as noted by

mailto:golmechanics@gmail.com

Roger T. Dean and McLean in the Oxford Handbook of Algorithmic
Music, starts as early as the word “algorithm” itself around 900 AD
(McLean & Dean, 2018, p. 5). More recently however, and perhaps
unavoidably, algorithmic music - now commonly practiced through
the digital medium of computers - has collided with the history of the
digital algorithms which process data and people on a global scale.
This is in part because algorithms, coupled with computational power,
have the ability to execute processes far beyond the capacity of an in-
dividual person. In this way, algorithms have served to revolutionize
the processing of data in the same way that mechanical tools once
revolutionized the processing of raw elements. Algorithms undergird
our financial systems and media landscapes, creating new paradigms
for understanding the world. As such, whether by processing sound,
consumer data or social interactions, the digital algorithm has become
a notable cultural medium for artists.

The nature of how artists interact with algorithms, however, varies
sharply between communities. Some musicians, like those who work
within Digital Audio Workstations (or DAWS), use static algorithms
as tools to produce a single desired output. Others use the algorithms
created by streaming services like Spotify so as to better understand
how they can shape their sound to increase audience engagement. Al-
gorithms themselves now play a role in music as an aesthetic in and
of themselves, as in the case of live coding: a musical practice which
“foregrounds the human authorship of algorithms as the fundamental
musical activity at play” (McLean & Dean, 2018, p. 4). This often
takes the form of writing algorithms in real-time as a performance
takes place, with the written algorithmic language itself being pro-
jected to audiences. “Algorithmic” has also become an identity: pop
stars such as Lil Miquela and Hatsune Miku use the aesthetic of digital
algorithms to generate a mystique surrounding their humanity or lack
thereof. I want to suggest that all of these aesthetic relations to algo-
rithms can be understood as differently-programmed constructions of
the “musical cyborg:” a figure which combines human creativity and
digital algorithms to create sounds and moments that would not oth-
erwise be possible through human production alone. In calling forth

the metaphor of the cyborg, I do so according to Donna Haraway’s
reading of it in the Cyborg Manifesto as “a cybernetic organism, a
hybrid of machine and organism, a creature of social reality as well
as a creature of fiction.” (Haraway, 2016, p. 5) The cyborg musician
is both a creative and social construction; its wiring produces sound
while also providing insight into the “social reality” that produced it.
Some musical cyborgs are a direct byproduct of our increasingly al-
gorithmic society at-large: in a world shaped by black box algorithms
developed by mega-corporations like Google and Facebook, musicians
are presented with the challenge of navigating a hyper-reality in which
information processing is entirely opaque; this results in a cyborg rela-
tionship that fosters an antagonism between its respective human and
machine halves. Moreover, albeit on a smaller scale, black box mu-
sical cyborgs can conceal the humanity in their construction through
further black boxing. Lil Miquela, a “digital influencer” based primar-
ily on Instagram (Khan, 2018), bills herself as “not a human being”
despite a lack of evidence for her behavior being produced by non-
human processes (@lilmiquela, 2018). Human producers, then, are
left competing with an invisible network of actors which manifest in
these singular, fictional forms. This overall relationship elucidates
an antagonistic relationship between humans and algorithms, despite
their constant effect on each other.

This seemingly bleak path where algorithms are either the masters
or slaves of humanity is not the end: Part of the reason the bound-
aries between human and computer production have been collapsing
is because they have always been ripe for reconstruction. As Donna
Haraway notes in the Cyborg Manifesto: “It is not clear who makes
and who is made in the relation between human and machine. It is
not clear what is mind and what is body in machines that resolve into
coding practices|...] we find ourselves to be cyborgs, hybrids, mo-
saics, chimeras|...] There is no fundamental, ontological separation
in our formal knowledge of machine and organism, of technical and
organic” (2016, p. 60). Just as a cyborg’s construction can represent
the world from which it was born, so too can it gestures towards not-
yet-realized futures through its fictive components. Because “the ma-

chine is us, our processes, an aspect of our embodiment,” as Haraway
continues, “We are responsible for boundaries; we are they” (2016, p.
65). This “we”, however, has become a case of contested ownership in
the 30 years since Haraway published the Cyborg Manifesto between
those steering the cyborg network towards optimized profiteering and
those seeking to generate life within it. As Mackenzie Wark notes in
her retrospective of Haraway’s work, “it was prescient of Haraway to
notice, and early on, that ‘the new communications technologies are
fundamental to the eradication of ‘public life’ for everyone.” The re-
duction of a wide range of processes, and not just labor, to a thing, or
in this case to code, supports a vast extension of private property re-
lations” (Wark 2015). The algorithms that undergird musical cyborg
network, with its musicians and instruments, now bear patents and
code that make true interoperability a distant dream. Later in this
paper, I explore how these components, found installed in artists that
are optimized for the streaming economy, make it increasingly diffi-
cult to build communal knowledge. The more we accept this mode of
algorithmic cyborging, both in and outside of music, the more hard-
coded the network will become against any redistribution of power.
The guidelines McLean lists for an Algorave construct an alternate
model dependent on the transparency and experimentation of algo-
rithms, which in turn proposes a new model for the musical cyborg.
Though algorithmic music production takes many forms which vary
in human agency, for this paper I want to focus specifically on mu-
sicians within the practice of live coding because live coders have
the most deliberate and intimate relationship with algorithms among
musicians. Moreover, it is a practice in which algorithms are equally
visible to both the performer and the audience. Live coders, through
this intimate relationship with their tools, offer a vision of what the
cyborg musician could look like in an age of digital automation and
reproduction, as realized through a few key practices, such as open
sourcing and human-computer dialogue. These practices define pro-
tocols for discourse in the live coding community. As such, live coders
can encode their own desired futures: “The boundary is permeable
between tool and myth, instrument and concept, historical systems

of social relations and historical anatomies of possible bodies, includ-
ing objects of knowledge. Indeed, myth and tool mutually constitute
each other (Haraway, 2016, p. 33). Thus, the live coding commu-
nity, through the development of their own agreed-upon tools and
practices, proposes a future for all human computer relations.

Redefining the terms of algorithmic culture

In order for a musician to be able to author their own algorithms,
the tools for algorithm authorship must be accessible at an individual
level. Naturally, open source software has become one of the tenets of
live coding: programs like TidalCycles and SuperCollider have dozens
of contributors that continue to make changes to the software to this
day. This accessibility makes the live coded cyborg both highly visible
and mutable.

This creative paradigm stands in stark contrast to the music in-
dustry’s relationship to algorithms at large. At present moment, the
influence of black-box technologies in popular music culture is simul-
taneously opaque and exploitable. Perhaps most notably within the
context of creative development, Spotify offers artists the ability to
understand themselves through the data the platform generates so
as to appeal to a wider demographic. In a video titled “How to
Read Your Data,” Spotify executives note that “Data can help you
learn things you hadn’t even thought about before.” To demonstrate
this, they feature a testimony from musical group slenderbodies [sic].
“Through the Spotify data we’ve come to realize that a lot of people
consider us as electronic artists... it’s surprising to see that consid-
ering how organic our sound is... maybe there’s, like, a future for
us doing some DJ sets on the side rather than just playing full live
musician sets with a live band” (Youtube, 2018).

The band came to this conclusion through Spotify’s artist tools,
which allow artists to see their most popular songs for given times
and locations. Though they existed as musicians before Spotify, the
data processing nudged slenderbodies towards new behaviors and cre-
ative decisions in pursuit of further quantifiable audience engagement.

There is a clear difference in slenderbodies’ use of algorithms com-
pared to a live coder’s use, though, which is that a live coder’s algo-
rithm generates sound while the other generates consumer data. What
this example is meant to show, rather than product of the algorithms,
is the artist’s relationship to algorithmic processes as a whole. The
Spotify cyborg is blind to the large-scale processes which inevitably
shape self-image, whereas the live coded cyborg actively shapes the
algorithms they use to optimize their output on an individual level.

There has been another curious effect of widespread black box al-
gorithm use: a new aesthetic has developed wherein human-produced
artworks present as if they were algorithmically produced. This 1 cy-
borg, unlike the live coder, has their circuitry concealed in order to
generate tension and confusion as to which parts of their construc-
tion are human and which are machine. With over 1 million followers
on Instagram, Lil Miquela presents as a CGI generated model with
feminine features, dressed in the latest high fashion and streetwear.
Whether Miquela’s actions are those of a robot or those of a human is
unclear: the company behind her, however, is made of human actors.
“Brud,” the creator of Miquela, “[is] a mysterious L.A.-based start-
up of ‘engineers, storytellers, and dreamers’ who claim to specialize
in artificial intelligence and robotics” (Petrarca, 2018). Here, a black
box conceals the efforts of human labor rather than those of an algo-
rithm. That Miquela chooses to present as a robotic being shows that
there is social capital at stake in the establishment of creative entities
which, authentically or not, traffic in the aesthetics of computation
and algorithmic production.

She’s released several singles and an entire album, for which the
credits are not publicly available. As perhaps alluded to by the ti-
tle of one of her singles with electronic musician Baauer “Hate Me”
(LuckyMe, 2018), the reception to Lil Miquela has been somewhat
antagonistic. Nora Khan notes that fans “dissect her photos online
and IRL, expressing disgust, disbelief, annoyance, loyalty, and ado-
ration” (Khan, 2018). In her public announcement of being a robot,
Lil Miquela acknowledges reading comments such as “You’re Fake,”
“You're CGI” and “Show us your ACTUAL face” (@Qlilmiquela, 2018).

Even large institutions have participated in Miquela’s dissection; one
video by New York Magazine walks viewers through the process of
“Hijacking” Lil Miquela in order to produce the digital figure in-house.
The designer in the video superimposes an image of Lil Miquela over
a featureless 3D model and subsequently distorts the image to lay
over the model like a tight cloth (New York Magazine, 2018). This
practice of “hijacking” the cyborg is only possible because of the gates
constructed by Miquela’s creators. With more visible circuitry, one
could construct a similar influencer avatar without the invasive prac-
tices demonstrated in the video.

If people want to access the underlying circuitry of a digital art
work, why not hand them the keys to the gate instead of forcing
them to break in? Live coders also wield digital aesthetics for their
projects, but do so in a way which makes the creative processes at
play transparent. While it is not necessarily radical or new to publish
the code of an art project on GitHub, live coding musician Mike Hod-
nick, aka Kindohm, uploaded the repository of his RISC Chip release
on Conditional Records when it was released in 2017. Through the
GitHub repository alone, one could navigate to the software, samples
and code used for the project and theoretically recreate the entire al-
bum themselves from scratch. Hodnick even went as far as to include
a Readme file and inline comments for each of the songs, as well as
links to downloads for samples used in the project (Hodnick, 2017).

It took only a few minutes to boot up my copy of TidalCycles
and paste in Hodnick’s code to run it for myself. From there, I be-
gan fiddling with the numeric parameters for his functions, which in
some cases noticeably changed the nature of the sound being pro-
duced and in other cases made no perceivable change. This moment
presented an alternate vision of remix and sampling culture, in which
the source was not degraded or otherwise wrested from the hands of
its originator. In The Work of Art in the Age of Its Technological
Reproducibility, Walter Benjamin posits that “to an ever-increasing
degree, the work [of art] reproduced becomes the reproduction of a
work designed for reproducibility” (2010, p. 17). With RISC Chip as
evidence, it seems as if open-sourced albums are works of art designed

for not just reproducibility, but also mutability.

This careful documentation, however, ends up further blurring the
lines between artist and artwork, producer and consumer, and even
one work of art from another. At what point did my substitution of
variables and functions in the code for RISC Chip become my own
creative product, rather than Hodnick’s? What is clear is that such
art does not belong to any one person or entity. Without the inher-
ent black box of an exported MP3 file in which all instrumentation,
production and human labor are condensed into a single file, RISC
Chip explicitly eliminates the possibility of constructing what George
E. Lewis refers to as the “superperson:” “The better the machines
played—and for my money, they do play quite well now—the greater
the threat to the mystery, and to an artist’s strategic self-fashioning
as one of a select band of designated superpeople with powers and
abilities far beyond those of mere Mortals” (2018, p. 4). The blurred
lines here are not the same which conceal Lil Miquela’s true con-
struction; they serve to erase the preconceptions of an artwork’s true
identity, but in a way that can be rewritten by more than just the
initial creator.

To reveal the circuitry of one’s creative process, rather than di-
minish the role of the human, however, recasts them as an essential
organic component of a networked sonic machine. As live coders use
each others’ code, they engage in mechanic processing at a different
pace and scale than their digital instruments, but nonetheless con-
tribute to the global computation of algorithmic noise. In this way,
live coding is the materialization of the fictional techno cyborg pro-
posed by Kodwo Eshun: “To cyborg yourself you name yourself after a
piece of technical equipment, become an energy generator, a channel,
a medium for transmitting emotions electric” (1998, p. 106).

Live coders “cyborg” themselves whenever they create GitHub ac-
counts under their artist names, or reveal the code on their screens
to show which processes are human and which are machine. This cy-
borg, in contrast to Lil Miquela, lays its circuits visible for rewiring
and recycling by others. As the role of the individual musician is
diminished, the contours of a larger, alien structure begin to take

shape. Eshun repurposes the words of Norman Mailer to further his
definition of cyborging, quoting that the process “’takes the immedi-
ate experiences of any man, magnifies the dynamic of his movements,
not specifically but abstract so that he is seen as a vector in a network
of forces.” (1998, p. 106) The ideal live coder then, becomes a trans-
parent processing unit which processes the ideas that pass through it
into a form that’s both simultaneously legible by an individual, yet
illegible without the additional processing power of the live coding
cyborg’s computational organs.

Machines are some of the most important collaborators in a live
coded work. To quote Andrew R. Brown, live coding creates “a poten-
tially enhanced sense of agency or otherness brought about by auto-
mated processes and their unpredictability or apparent intentionality”
(2016, p. 184). The communication between human and computer is
amplified through live coding, but has been identified in other artistic
practices as well. Hatsune Miku is a Japanese virtual pop idol owned
by the company Crypton. She performs via projection for physical
audiences and is relevant to discussions of live coding in that, along
with being a musical cyborg, her interactions with fans take place
through open-source software and licensing, thus allowing for her to
be copied and pasted, just as text-based algorithms would, into vastly
different contexts.

The Miku cyborg has a healthier relationship to her fans than Lil
Miquela, evidenced primarily by said fans accepting her cyborg status
as opposed to frustratingly prying at a black box. But Miku’s aura
is nevertheless dependent on the unifying force of an idolized avatar
projected onto stages and laptop screens. The labor of many fans,
or “prosumers,” funnels directly into a single entity that is, decid-
edly, a reflection of ourselves. Jelena Guga writes that Miku’s “new
aura projects the intensities of our own bodies into new holographic
humanoid forms.” (2015, p. 43)

As Wark notes in her essay on Haraway, cyborgs can also give us
insight into “the point of view of the apparatus itself, of the elec-
trons in our circuits, the pharmaecuticals in our bloodstreams, the
machines that mesh with our flesh. The machinic enters the frame

not as the good or the bad other, but as an intimate stranger.” From
this perspective, the Miku cyborg construction is incapable of fully
embodying our second halves, our machinic side, in order to restruc-
ture the musical cyborg as a whole. The live coding performance in
its most simple form - the coder, the computer and the visual of the
screen - could be seen as simulating this same projection onto the
coder’s body itself. But as was the case with a live-streamed perfor-
mance, the body of the coder need not be visible for their presence
to be felt. Instead, the aura of the live coding performance could be
seen as projecting the intensities of our cognitive processes on to a
new hybrid structure that is as machine as it is human. This object
is a network of computers and humans which make up the global pro-
cessor of live coding, where humans are both the instrument and the
producer; nodes in a larger, shapeless network available for restruc-
turing. Rather than clinging to humanoid idolatry, the live coding
network distributes its resources more evenly across a constantly re-
shaped landscape of coders and software, allowing for a more hetero-
geneous soup of cross-collaboration and creation.

This form of the cyborg was foretold by the fictions realized by the
techno producers of Detroit. As Kodwo Eshun notes of Juan Atkin’s
Model 500 project, “The producer is now the modular input, willingly
absorbed into McLuhan’s 'medium which processes its users, who are
its content.” Tapping into the energy flow of the machine, the Fu-
turist becomes an energy generator” (1998, p. 106). The live coding
realization of this is slightly less strong-handed in its posthumanism,
as human input is still an essential component of performance. But
this compromise, held together by open source code, has the poten-
tial to be reconstructed. Perhaps then, the producer-as-instrument as
foretold by Eshun, rather than the individual live coder, is the entire
network of live coding musicians, hyperlinked by code and wire for
the purpose of networked sonic computation.

Conclusions

In this last section, I wanted to outline some of the essential qualities
of the live coder as a potential model for the musical cyborg. Their
use of legible, personal algorithms and open source software envision a
relationship between human and machine which is symbiotic, mutable
and transparent. Whether using live coding software such as Tidal-
Cycles or SuperCollider, as well as performance specific softwares as
in Sonic Biking, the live coder has the potential to reshape the bound-
aries between their human and machine counterparts. It was difficult
pinning down what wasn’t a live coded cyborg precisely because the
definition by McLean, which simply calls for the human authorship
of algorithms to be a primary creative goal, allows for endless con-
structions and reconstructions. One can be a live coder and still use
hardware instruments, collaborate with other humans as well as non-
algorithmic entities, so long as there is some degree of processing the
world through an algorithmic process.

Even the politics of live coding, due to their open source, mutable
nature, have been iterated on as one would an iterate an algorithm.
In charting the development of the TOPLAP manifesto, Christopher
Haworth explains that “it outlined the conceptual, performative, tech-
nological, and philosophical conditions live coders should meet or en-
gage with, performing the dual function of materializing and specu-
latively positing an idea of authentic live computer music in the form
of ten short commandments” (2016, p. 13-14). Over time, though,
these commandments changed - notably, demands about what specific
languages or tools could be used by live coders disappeared. What
remained was a focus on transparency that, according to Haworth:

“(...)conveys an ontological politics of live computer mu-
sic, one that is positioned against two dominant tendencies
in electroacoustic and computer music: one, electroacous-
tic art music, where fixed-media music is played back in
concert halls over loudspeakers; and two, the club-based
laptop performance of the early 2000s, where audiences
watched performers from behind their laptop screens, and

the performativity of the spectacle was largely taken on
faith” (2016, p. 14).

The examples Haworth picks are telling, in that they are instances
of performance specific to a time and culture of reproducible music.
The TOPLAP manifesto, then, both reacts to and affects the devel-
opment of computer music, much like a live coder’s algorithms are
affected by and subsequently affect the live coder themselves. The
manifesto reveals that the design ethos of live coding relates not just
to the individual live performance, but also at a meta level in terms
of how live coders interact with each other and develop cultural stan-
dards for these practices. Having these standards laid out in precise
terms, available to all but always subject to change, reinforces the
open source accessibility, productive interaction and vision of an al-
gorithmic future that live coding generates. Whether the practice
generated the politics, or the politics generated the practice, is per-
haps irrelevant; both aspects components feed off each other as smaller
parts in a larger cyborg system. Nevertheless, there are lines to be
drawn between the live coder and other algorithmic cyborgs. Though
Lil Miquela, Hatsune Miku, and Spotify’s artists exist within an al-
gorithmic culture, the nature of their relationship does not qualify
for the continued authorship essential to McLean’s definition of live
coding because their algorithms have been authored by third parties.
In addition, their black box nature leaves them immutable, and thus
unable to be reconfigured so as to connect with the human in a symbi-
otic relationship. These intentional distinctions posit the live coding
cyborg as a cultural figure whose construction could be applied be-
yond the world of music. Haraway might see the live coded cyborg as
but one piece of a larger potential restructuring of society; “Taking
responsibility for the social relations of science and technology means
[...] embracing the skilful task of reconstructing the boundaries of
daily life, in partial connection with others, in communication with
all of our parts.” (2016, p. 67) As algorithms pervade everything from
industry to culture to politics, the utopian model of the live coded
cyborg can serve as a model for further rewiring in order to gener-

ate empathy and symbiosis between human and machine. Though
the live coded cyborg exists today, it is still an unattainable fiction
for many: I would be remiss not to mention what Haworth discov-
ered to be fundamental fuel in the development of live coding: the
institutional support of universities. “Being subsidized by arts and
engineering grants,” he notes, “the earlier-cited emphasis on novelty
and formal experimentation (to the detriment of questions of musical
style and genre) emerges as an institutional and economic mediation
as much as a performative genealogy” (2018, p. 21). The only places
where these generative ideas can survive are those that have yet to
be completely recoded by platforms of privatization. As it stands,
the reality for many musicians is that black boxing technique or influ-
ence is essential to generating profit from their work. But, with Eno
as inspiration, planting seeds now can lead to great and unexpected
things later. If the barrier between human and machine is now more
malleable than ever, we must work towards the betterment and in-
teroperability between machines as much as we do between humans,
lest we ignore a vital organ simply because it bears circuitry. The
systems which govern current human relations are composed of the
same unnatural, ideological code that govern copyright and creative
relations. The cyborg is an ideal, and thus it can be an aspirational
goal at every level of the stack, from government to culture. But the
same can be said of a network recoded from the bottom up; it too can
generate systems beyond those which they are conceived in. Build-
ing our networks towards the live coding cyborg brings us closer to
building a protocol of trust between human and nonhuman, nature
and machine, if such a boundary still exists.

Acknowledgments

This paper could not have been written without the support and
guidance of Dr. Reginold Royston from the University of Wisconsin,
Madison.

References

Bauuer (2019). Hate Me. [Ounline] LuckyMe. Available at: https:
//www.youtube.com/watch?v=hYRDOOYSL3w| [Accessed 13 Aug. 2019].

Benjamin, W. and Jennings, M. (2010). The Work of Art in the
Age of Tts Technological Reproducibility. Grey Room, [online] 39,
pp.11-38. Available at: http://www.jstor.org/stable/27809424
[Accessed 13 Aug. 2019].

Brown, A.R., 2016. Performing with the other: the relationship
of musician and machine in live coding. International Journal of Per-
formance Arts and Digital Media, 12(2), pp.179-186.

Eno, B., Composers As Gardeners. Edge. Available
at: https://www.edge.org/conversation/brian_eno-composers-
as—-gardeners.

Eshun, K. More Brilliant Than The Sun: Adventures in Sonic
Fiction. Quartet Books, London, 1998.

Guga, J., 2015. Virtual Idol Hatsune Miku. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering Arts and Technology, 145, pp.36—44.

Haraway, D. (2016). The Cyborg Manifesto. In: Manifestly Har-
away. Minneapolis: University of Minnesota Press.

Haworth, C., Technology, Creativity, and the Social in
Algorithmic Music. In The Oxford Handbook of Algorith-
mic Music. Oxford: Oxford University Press. Available
at: http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/
9780190226992.001.0001/0xfordhb-9780190226992-e-29 [Ac-
cessed November 11, 2018].

Hodnick, M. (2019). kindohm/risc-chip. [online] GitHub. Avail-
able at: https://github.com/kindohm/risc-chip| [Accessed 13
Aug. 2019].

Instagram. (2018). Instagram post by Miquela
Apr 19, 2018 at 5:59pm UTC. [online] Available at:
https://www.instagram.com/p/BhwuJcmlWh8/7utm_source=
ig embed&utm_campaign=embed loading state_control/ [Accessed
13 Aug. 2019].

Khan, N. (2018). Lil Miquela Shows Us the Future of Fame.
[online] Garage. Available at: https://garage.vice.com/en_us/
article/wjkbex/lil-miquela-interview [Accessed 13 Aug. 2019].

Lewis, George E. Why Do We Want Our Computers to Im-
provise?.The Oxford Handbook of Algorithmic Music. : Oxford
University Press, February 05, 2018. Oxford Handbooks Online.
Date Accessed 11 Nov. 2018 http://www.oxfordhandbooks.com/
view/10.1093/0xfordhb/9780190226992.001.0001/0xfordhb-
9780190226992-e-29.

Matthews, K. Beyond Me. The Oxford Handbook of Al-
gorithmic Music. Oxford University Press, February 05,
2018. Oxford Handbooks Online. Date Accessed 11 Nov.
2018 http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/
9780190226992.001.0001/0xfordhb-9780190226992-e-34| .

McLean, A. (2019). Algorave/guidelines. [online] GitHub.
Available at: |https://github.com/Algorave/guidelines/blob/
master/README_en.md [Accessed 13 Aug. 2019].

McLean, A. and Dean, R. (2018). The Oxford Handbook of Algo-
rithmic Music. 1st ed. Oxford: Oxford University Press.

Ong, W.J., 1988. Orality and literacy: the technologizing of the
word, London ; New York: Routledge.

https://www.youtube.com/watch?v=hYRD0OYSL3w
https://www.youtube.com/watch?v=hYRD0OYSL3w
http://www.jstor.org/stable/27809424
https://www.edge.org/conversation/brian_eno-composers-as-gardeners
https://www.edge.org/conversation/brian_eno-composers-as-gardeners
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-29
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-29
https://github.com/kindohm/risc-chip
https://www.instagram.com/p/BhwuJcmlWh8/?utm_source=ig_embed&utm_campaign=embed_loading_state_control
https://www.instagram.com/p/BhwuJcmlWh8/?utm_source=ig_embed&utm_campaign=embed_loading_state_control
https://garage.vice.com/en_us/article/wjkbex/lil-miquela-interview
https://garage.vice.com/en_us/article/wjkbex/lil-miquela-interview
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-29
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-29
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-29
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-34
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190226992.001.0001/oxfordhb-9780190226992-e-34
https://github.com/Algorave/guidelines/blob/master/README_en.md
https://github.com/Algorave/guidelines/blob/master/README_en.md

Petrarca, E. (2018). Lil Miquela’s Body Con Job. [online]
The Cut. Available at: https://www.thecut.com/2018/05/1i1-
miquela-digital-avatar-instagram-influencer.html [Accessed
13 Aug. 2019].

Seyfert, R. & Roberge, J., 2016. What Are Algorithmic Cultures?
In Algorithmic Cultures: Essays on Meaning, Performance and New
Technologies. Routledge, pp. 1-25.

Spotify for Artists (2018), How to Read Your Data. Available at:
https://youtu.be/686C0VucG54. (Accessed: October 12 2018)

Striphas, T., 2015. Algorithmic culture. European Journal of Cul-
tural Studies, 18(4-5), pp.395—412. DOI: 10.1177/1367549415577392

Wark, M (2015). Blog-Post for Cyborgs—McKenzie Wark on
Donna Haraway’s 'Manifesto for Cyborgs’ 30 years later. [online]
Verso. Available at: https://www.versobooks.com/blogs/2254-
blog-post-for-cyborgs-mckenzie-wark-on-donna-haraway-s—
manifesto-for-cyborgs-30-years-later| [Accessed 3 Dec. 2019]

Yashari, L., 2019. Lil Miquela Is A Virtual Artist Who Is Blur-
ring The Boundaries Of Identity. NYLON. Available at: https:

//nylon.com/articles/lil-miquela-interview|[Accessed October
12, 2018].

YouTube. (2019). How We Hijacked Lil Miquela (and Created
our Own CGI Influencer). [online] Available at: https://youtu.be/
AEXjFjwq3uU [Accessed 13 Aug. 2019].

https://www.thecut.com/2018/05/lil-miquela-digital-avatar-instagram-influencer.html
https://www.thecut.com/2018/05/lil-miquela-digital-avatar-instagram-influencer.html
https://youtu.be/686C0VucG54
https://www.versobooks.com/blogs/2254-blog-post-for-cyborgs-mckenzie-wark-on-donna-haraway-s-manifesto-for-cyborgs-30-years-later
https://www.versobooks.com/blogs/2254-blog-post-for-cyborgs-mckenzie-wark-on-donna-haraway-s-manifesto-for-cyborgs-30-years-later
https://www.versobooks.com/blogs/2254-blog-post-for-cyborgs-mckenzie-wark-on-donna-haraway-s-manifesto-for-cyborgs-30-years-later
https://nylon.com/articles/lil-miquela-interview
https://nylon.com/articles/lil-miquela-interview
https://youtu.be/AEXjFjwq3uU
https://youtu.be/AEXjFjwq3uU

Designing for a Pluralist and
User-Friendly Live Code
Language Ecosystem with
Sema

Francisco Bernardo
Emute Lab, School of Music, University of Sussex
f.bernardo@sussex.ac.uk

Chris Kiefer
Emute Lab, School of Music, University of Sussex
c.kiefer@sussex.ac.uk

Thor Magnusson
Emute Lab, School of Music, University of Sussex
t.magnusson@sussex.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

IProject MIMIC, https://mimicproject.com, accessed: 2019-09-15

Abstract

The growing popularity of the live coding and algorave scenes has
inspired incentive and support for accessible, diverse and innovative
approaches in expressing art through code. With live coding, the real-
time composition of music and other art becomes a performance art
by centering on the language of the composition itself, the code. Sema
is a new open source system which aims to support user-friendly ap-
proaches to language design and machine learning in live coding prac-
tice. This paper reports on the latest technical advances and user
research with Sema. We provide an overview and design rationale
for the early technical implementation of Sema, including technology
stack, architecture, user interface, integration of machine learning,
and documentation and community resources. We also describe the
activities of the MIMIC Artist Summer workshop, a full-week work-
shop with a group of 12 participants, which we designed and delivered
to gather user feedback about the first design iteration of Sema. Find-
ings from our workshop corroborate that language design and machine
learning are advanced topics in computer science which may be chal-
lenging to users without such a background. Nevertheless, we found
that such topics can inform the design of systems which may be both
useful and usable to the live coding community.

Keywords: Programming Language Design, Web Live Coding,
Machine Learning, User-Centred Design, Coding Ecosystems

Introduction

This paper presents Sema, a new Web-based, open-source, live coding
language design and performance playground. Sema is aimed for real-
time signal generation and processing, machine listening and machine
learning. We are developing it as part of the AHRC-funded project
MIMICE] (“Musically Intelligent Machines Interacting Creatively”), a
three-year AHRC-funded project, run by teams at Goldsmiths Col-

mailto:f.bernardo@sussex.ac.uk
mailto:c.kiefer@sussex.ac.uk
mailto:t.magnusson@sussex.ac.uk
https://mimicproject.com

lege, Durham University and the University of Sussex. MIMIC ex-
plores how to design and communicate machine learning and machine
listening tools in simple and accessible ways for composers, instru-
ment makers and performers. It does this through the design and
adoption of new web-based computational tools that leverage on the
internet as substrate for a live software ecosystem.

We are interested in the symbiosis of creative machine learning
(Grierson et al. 2018) and live coding (Magnusson 2014) approaches
to music. Live coding can facilitate pedagogical approaches to com-
putational thinking in the context of creative and artistic practices
(Roberts et al. 2016) and STEAM (Yee-King et al. 2017). We seek
to understand how well new users from creative areas-i.e. as op-
posed to more technical backgrounds such as computer science and
engineering are able to grasp and apply computational processes of
considerable complexity, such as real-time interactive signal process-
ing, machine learning model-building (Bernardo et al. 2017), and
language design and grammar specification. We are employing user-
centered techniques to leverage the design of new software develop-
ment tools and evaluate progress through open-ended and creative
processes (Bernardo et al., 2018). The paper is structured as follows:
this section introduces the paper and presents background research
around live coding systems and practices and machine learning. Sec-
tion 2 presents an overview of the early technical implementation of
our new system Sema and elements of our design strategy and ratio-
nale. Section 3 describes the MIMIC Artist Summer workshop and
the activities for gathering user feedback about the first design itera-
tion of Sema. In Section 4, we discuss the main findings and emerging
themes of the workshop. Section 5 concludes with the main takeaways
and future work.

Background

Live coding in the arts has existed as an exciting field of activity
since the early 2000s, with seeding work and experimentation from
previous decades. Live coding practitioners typically engage simulta-

neously in programming with a domain specific language (DSL) and
other modalities, including audio and visual synthesis, instrument de-
sign, algorithmic creation, composition and performance (Magnusson,
2014). Early practitioners would typically invent their own systems
for musical and other types of performance (e.g. McLean, 2004), of-
ten developing systems that were inspirational, humorous and highly
effective in real-time performance under stress. With the growing
popularity of live coding and algoraves (Armitage 2018), the live cod-
ing community appears to be consolidating their practices around a
few systems-e.g. SuperCollider (McCartney, 2002), ixi lang (Magnus-
son, 2011), Gibber (Roberts and Kuchera-Morin, 2012), Sonic Pi and
Overtone (Aaron and Blackwell, 2013), TidalCycles (McLean, 2014),
ChucK (Wang et al., 2015) and Extempore (Sorensen, 2018). While
such systems are excellent examples of established tools for live cod-
ing which help to build the live coding community and attract new
beginners in, we have lost some of the variation and diversity which
existed before.

Wakefield and Roberts (2017) have conducted previous research in
language design for live coding on the Web. Their browser-based en-
vironment, which leverages a virtual machine, the Parsing Expression
Grammar formalism, and an interactive online tutorial and documen-
tation, aimed at enabling users to define custom DSLs syntax and
semantic actions. Wakefield and Roberts also described the results
deploying the system on an ICLC 2016 workshop, where a few par-
ticipants were able employ it to develop their own mini-languages.

This paper follows up on this research and on a previous survey
on the design of languages and environments for live coding presented
at ICLC 2019 (Kiefer and Magnusson 2019) and the “Live Coding
Machine Learning” workshop conducted at the ICLC 20191. In this
engagement with communities of practitioners, we asked which fea-
tures they envisioned for future live coding environments and lan-
guages that could integrate machine listening and machine learning.
The findings indicated a wide space of possibilities, including support
for hybrid approaches and multi-paradigm languages (i.e. OOP and
functional), flexible, expressive and extensible languages and proto-

typing environments, good quality documentation and examples, as
well as a clear and informative error report system. The empha-
sis that survey respondents placed on potential qualities for a new
live coding language, e.g. brevity, simplicity, expressivity, flexibility,
adaptability and plurality, pushed us to reconsider the idea of trying
to satisfy everyone with one general live coding language design. In-
stead, we considered designing a new system which could enable and
empower users to create and refine their own idiosyncratic languages
for musical expression. Considering the history and tradition of live
coders building their own systems (Magnusson 2014), this decision
would contribute further to a plurality of systems in a field teeming
with inventive solutions. We believe that the recent innovation in
Web technologies can afford the evolution of an ecosystem of real-
time, user-defined live coding languages which combines interactive
machine learning, machine listening and audio threads. In this pa-
per we account for the early stage of our design exploration aimed at
fulfilling this vision.

SEMA, A Live Coding Language Design Playground

Our previous findings (Bernardo et al., 2019; Kiefer and Magnusson,
2019) inspired us to build a modern Web-based system to support
rapid prototyping of live coding languages, which we titled Sema. We
are engaged in a design exploration process pursuing the following
principles:

e Integrated signal engine — no conceptual split between the lan-
guage and signal engine. Everything is a signal

e Single sample signal processing — per-sample sound processing
to support techniques that use feedback loops, such as physical
modelling, reverberation and IIR filtering

e Sample rate transduction — signal processing with one princi-
pal sample rate-i.e. the audio rate-is simpler. Different sample

rate requirements of dependent objects can be resolved by up-
sampling and down-sampling. We use the ‘transducer’ analogy
to enable and accommodate a variety of processes with varying
sample rates (video, spectral rate, sensors, ML model inference)
within a single engine.

e Minimal abstractions — no high-level abstractions such as buses,
synths, nodes, servers, or any language scaffolding in our signal
engine. Such abstractions sit within the end-user language de-
sign space.

e Striving for an adequate compromise between simplicity and
flexibility — support the different user needs in the continuum
which comprises beginner and expert live coders.

e Prioritizing usability and learnability — support a smooth and
gradual learning curve, ease of use, and straightforward appli-
cability.

e Balancing performance trade-offs with an efficient implementa-
tion — considered the constraints above and the performance
overhead they may entail, we build upon an efficient implemen-
tation to optimize the utility of our system for live coding per-
formance.

In this section, we provide a technical overview of the first design
iteration of Sema. Figure [1| below illustrates the general architecture
and main elements of our solution.

Machine Learning

Machine learning (ML) has been integrated into Sema as a first-class
citizen and core component. ML processes have computationally
intensive stages which can undermine the user experience of an in-
teractive application. Previously, we described the critical usability
issues of Web-based applications with interactive machine learning

(IML) workflows and audio, where end-users build custom ML mod-
els from small, lightweight, user-created data sets (Bernardo et al.
2018). In simple IML implementations, the ML model-training stage
can have a thread-hogging behaviour which results in a freeze of the
main JS thread. Furthermore, the ML-inference stage competes with
the DOM and audio rendering, which may cause audio clicks and
dropouts. These processes are therefore better suited for execution
on a dedicated thread. This motivated the design of a multi-thread
and loosely-coupled architecture for Sema, based on JS workers for
ML and AudioWorklet for audio signal processing and rendering (fur-
ther detailed in Section 2.2). Sema imports the latest version of Ten-
sorflow.js (TFJS) into a JS Web worker and where it is used in the
dynamic evaluation of the JS code for bespoke ML pipelines. This
enables the user to enact parts of a ML workflow through partial
evaluations of TFJS code related to different parts of the ML work-
flow, such as the set up the training datasets, inputs and outputs, the
creation of a model architecture, the definition and configuration the
models’ hyperparameters, and communication with the user-defined
live coding language context. The mechanism is similar to Jupiter
Notebooks, where the user can evaluate different code blocks or re-
gions in a non-linear fashion. ML processes in Sema adhere to our
transducer concept, in that the sample rates from the event streams
they receive from and generate to the live code language context, are
converted to and from the sample rate of the audio context.

Signal Engine

The critical usability issues described in the previous section moti-
vated the first step in our design strategy: to implement a signal
engine which could run client-side in the browser, in a dedicated

2WebAssembly, https://webassembly.org/, accessed: 2019-09-15

3Nearley.js, http://nearley.js.org/, accessed: 2019-09-15

thread. Bernardo et al. (2019) provide a more detailed treatment
of how we accomplished our innovative design pattern for an WAAPI
AudioWorklet-based signal engine and of the performance tests con-
ducted. In a nutshell, we refactored the C++ DSP library Maximilian
(Grierson and Kiefer, 2011) and transpiled it into a WebAssemblyﬂ
(WASM) module using Emscripten (Zakai, 2011). Our signal engine
loads the Maximilian WASM module into a custom Web Audio API
(WAAPI) AudioWorklet processor (AWP) (Choi, 2018). In the au-
dio rendering loop, the AWP (Figure 1)) evaluates dynamic DSP code
which is injected through an the AudioWorklet asynchronous mes-
saging system. One trade-off of our scalable and high-performance
signal engine is that Sema inherits the current WAAPI AudioWorklet
limitations and only runs in Chromium-based browsers (e.g. Chrome,
Brave, Microsoft Edge, Opera).

Live Code Language Parser

In Sema’s first-iteration implementation, which was used on the
MIMIC Artist Summer workshop, users were required to employ and
manually execute a Nearley.jsﬂ shell script to generate a new parser
for a their user-defined live code language. The Nearley.js toolkit
and library implements the Earley algorithm (Earley, 1970). Users
needed to define and write a grammar specification in the Backus-
Naur Form (BNF) and compile it against Nearley to generate a JS
parser. The resulting parser would then be included in Sema’s source
code and the solution rebuilt. In comparison with other parsing for-
malisms (e.g. parsing expression grammars), the Earley algorithm
supports a broader set of grammars, including ambiguous grammars
with left-side recursion. The trade-off for the versatility and flexibil-
ity of Nearleyﬂ is performance. This is shown by comparisons with

4Parsing Libraries Benchmark, https://sap.github.io/chevrotain/performance/, accessed: 2019-09-18

https://webassembly.org/
http://nearley.js.org/
https://sap.github.io/chevrotain/performance/

Nearley Parser Generator

Lexer Grammar

Intermediate Language

Abstract Syntax Tree

i AST to serialized JS

Audio Worklet Node

.port.postMessage

Ul

Live Coding || Javascript (ML)
Editor Editor

bidirectional

messaging

Signal Engine

Main
Controller

maximilian.util.js

Machine Learning
Magenta.js

Tensorflow.js

Figure 1: Sema’s first-iteration architecture

asynchronous

Audio Worklet Processor

.port.onmessage

maximilian.wasm.js

Maximilian C++
WebAssembly module

compiled ahead-of-time
with Emscripten

parsing libraries, DSL and custom-written parser implementations,
and other parsing approaches. However, the results from our previ-
ous performance tests (Bernardo et al., 2019) show that Nearley, even
if slower than other parsers, performs in sub-perceptual time, which
is, therefore, adequate for live coding performance.

Graphical User Interface and Code Editors

We experimented with different code editors while considering cri-
teria such as component architecture, community adoption, main-
tenance and support, and ease of integration with Webpackﬂ We
opted for CodeMirrorﬁ to power the two user-facing editor instances
in our web-based live coding environment. One CodeMirror instance
runs a respousive live coding editor (Figure |2} top, dark background)
which provides users with general code editing capacities and manual
code evaluation using keyboard shortcuts (CMD-Enter). The other
instance runs a second editor (Figure [2| white background) where
the user can inspect, customize, or program TFJS-based ML-model
pipelines from scratch, as well as define the communication bind-
ings between the user-defined language and the ML worker threads.
Sema’s first GUI iteration is minimalist and provides a few command
buttons, (Figure bottom) for pausing and resuming audio rendering
and downloading code from the editors to the local file system. Sema
also provides a combo box button with a selection of pre-defined TFJS
code for populating the second editor with JS code. This selection
consists of a selection of pipelines for building specific ML models built
into our system—e.g. simple linear regression (hello-world), two-layer
non-linear regression, binary classification, Long-Short-Term-Memory
(LSTM) for text generation, echo state networks, and transfer learn-
ing with a pre-trained Music Recursive Neural Network (RNN) from

5Webpack, https://webpack.js.org/, accessed: 2019-09-18
6CodeMirror, https://codemirror.net/, accessed: 2019-09-18

7 Google Magenta, https://magenta.tensorflow.org/, accessed: 2019-09-18

Google Magentaﬂ

Workflows
e{’%
const moo = require("moo");
const lexer = moo.compile ({
click: /click/,
ws: {match: /\s+/, lineBreaks: truel},
B
hx

Statement -> Y%click
{% d => [{"esiglut": {
>@spawn’: {
’@sigp’: {
>@params ’: [{ ’@num’: { value: 1 }},
{ ’@string’: ’click’ }],
>@func’: { value: ’loop’}

}

}H
h}

Listing 1: Code Example 1

Section 2.3 introduced how the parser for the custom user-defined
live code languages is created by the user. Listing|l|shows code of the
first Sema tutorial to illustrate a minimal live coding language gram-
mar, written in extended BNF and Sema’s intermediate language. A

https://webpack.js.org/
https://codemirror.net/
https://magenta.tensorflow.org/

-

1
2
3
4
5
6
7
8
9
0
1

@ Ssema

@ localhost:9001

:x:{{{2,0.33}imp, {1,0.66}imp}sum}\909b;

:0:{{0.2,0.5}imp}\90%0pen;

:5:{{0.5,0.5}imp}\909;

tc:{{{0.5,0.25}imp,{1,0.33}imp,{1,0.66}imp, {1,0.99}imp}sum}\909closed;

tnoi:{{0.2,0.9}imp}\noinoi;

{:x:,:8:,:0:,:C:,:noi:}mix

//js

//create the model

var model = tf.sequential();

model.add(tf.layers.dense({ units: 1, inputShape: [1] }));

model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' });
Open model example:

//set up the training data se”g 7ot .

var xs = tf.tensor2d([0, 1, 2 biary-ciassification [6, 11);

_ Istm-txt-generator o
var ys = tf.tensor2d([0, 50, . coerewox 00, 2501, [6, 11);
music-rnn
Play: Cmd Enter = Stop: Cmd. Download JS Code = Download Live Code | hello-world Y

Figure 2: Snapshot of the GUI (pre-workshop version) with default language and machine learning model code

user compiles a file containing this grammar with Nearley to generate
a parser for the 1-token language containing the expression “click”.
The parser is included in Sema source code and used when users eval-
uate an expression in the live coding editor — i.e. by pressing Cmd-
Enter after selecting an expression or placing the cursor on a given
line in the editor — and trigger the main workflow in Sema (Figure
dashed connectors). The user-evaluated expression is parsed by
the Nearley-generated parser. If the expression is valid according to
the language formally defined by the BNF grammar specification, the
parser outputs an Abstract Syntax Tree (AST). The AST, a tree-like
data structure which breaks down the user expression, is serialized to
JS expressions that specify which Maximilian DSP objects are used
and how they are assembled into DSP functions that will run in the
AudioWorklet processor (AWP). These JS expressions are packed into
a JS object which is posted through the AudioWorkletNode messag-
ing port (Figure[l) and evaluated dynamically in the AWP audio loop

Community and Learning Resources

Sema is hosted in a code repository on github.conﬁ MIMIC-Sussex
organisation, where it is published along other MIT-licensed satellite
projects (e.g. osc2sema, sema.github.io). We are developing Sema
using a modern web development stack based on mode.jdﬂ7 webpack,
and package managers such as yarrﬂ or npnﬂ We are using this
stack to leverage on automatic bundling workflows for code, assets,
and integrating third-party code from the OSS ecosystem. The doc-
umentation for Sema comprises resources that assist the user in the
described workflow. Currently, that includes:

e reference and code examples for the default demo language

e intermediate language representation for the signal engine

reference for the DSP objects and methods of the Maximilan.js
API

e data storage and loading functions

Other learning resources are tutorials (Listing embedded in
Sema’s solution which aim to support a progressive learning curve
to grammar editing and language design.

The Mimic Artist Summer Workshop

In this section we describe the elements, activities and results of the
MIMIC Artist Summer workshop, which we designed and delivered
to gather user feedback about the first design iteration of Sema.

Data Collection

We used an array of data collection methods before, during and after
the workshop. We ran a pre-workshop survey to help us understand
the background knowledge and skills, motivation, and project pro-
posals of workshop candidates. Data collection during the workshop
included participant interactions in the workshop in Slack channel,
photos, video and sound recordings of participants’ live coding per-
formances with their customized environments, observational notes
from the workshop, and notes from the final group discussion. Par-
ticipants’ forks and pull requests during the workshop are also part
of the primary data set and publicly available from Sema’s github

8MIMIC-Sussex/sema, https://github.com/mimic-sussex/sema) accessed: 2019-09-18

9Node.js, https://nodejs.org/, accessed: 2019-09-18
Ohttps://yarnpkg.com/, accessed: 2019-09-18

1 https://www.npmjs.com/ accessed: 2019-09-18

https://github.com/mimic-sussex/sema
https://nodejs.org/
https://yarnpkg.com/
https://www.npmjs.com/

repository. We also ran a post-workshop survey with questions on
four main categories: live coding language design, the Sema system,
machine learning and community.

Participants and Pre-Workshop Survey

The call for participation for the MIMIC Artist Summer Workshoﬂ
was released on May 24, 2019. The call addressed artists interested in
participating in the workshop and using Sema to build their own live
coding languages for live performances and composition using ma-
chine learning. The call presented a workshop week-long programme
and introduced. We received 16 responses to our pre-workshop survey
from which we selected 12 workshop participants (9 males, 3 females).
Participants came from the UK (6 participants), Netherlands (2),
Norway (1), Germany (1), Sweden (1) and Spain (1). With only one
exception, a participant who reported having beginner coding skills,
most participants reported being very experienced coders in multiple
languages (e.g. JavaScript, Python, C++), including CS graduates,
PhD students and teachers of programming. Most participants re-
ported being experienced live coders (e.g. SuperCollider, TidalCycles,
ixi lang) also with skills in data-flow languages (e.g. Pure data and
Max/MSP). One participant mentioned never having live coded, two
participants mentioned not having performed live coding in public. In
relation to machine learning skills, the group was more diverse. Half of
the group reported having little to no experience in machine learning.
Other participants reported having tinkered with a ML toolkit—e.g.
Wekinator, GRT, Keras, ml.lib for Max/MSP, and SuperCollider ML
tools. Three participants reported having advanced knowledge in ML,
two with publications or artworks in the area.

Some of the reasons and motivation that users expressed for at-
tending the workshop included:

e developing their practice in live coding and performing

e understanding the possibilities of machine learning in music

e enhancing their knowledge about machine listening and machine
learning

e building new musical instruments and tools

e developing new methods of performance and interacting with
audience

e expanding their social network in the machine learning for mu-
sic and live coding community and meeting like-minded people,
learn how to communicate with people in the field

e finding new teaching material

e creative JS coding and exploration

Participants’ proposals for projects at pre-workshop stage in-
cluded:

e clive coding environment with live acoustic audio inputs and
algorithmic processing

e building a new instrument with relevant musical parameters for
both the performer and the audience

e building tools for song writing

e expanding a personal live coding environment with generative
algorithms and recommendations for composing melodic/rhyth-
mic structures

e exploring the possibilities of real-time synthesis using machine
learning to create new sounds

e controlling feedback systems

e a live coding system for 3D printing, a rule-based learning sys-
tem for live coding

I2MIMIC Artist Summer Workshop, http://www.emutelab.org/blog/summerworkshop, accessed: 2019-09-15

http://www.emutelab.org/blog/summerworkshop

Overview of the Workshop Week and Sessions

Workshop sessions took place at the Sussex Humanities Lab (SHL)
with the exception for the performance night. The first day of the
workshop started with a contextualisation of the workshop within
MIMIC research goals and outline of the workshop week activities
(Table). Participants were invited to participate at EMUTE
LAB live coding performance night “Musically Intelligent Machines”
by the end of the week at the local venue Rose Hill.

Day Topic

1 Induction session on Language Design with Sema &
Induction session on Machine Learning and Sema

2 Counterpoint studio presentation and workshop
session

3 Induction session on Machine Listening

4 (Aesth)et(h)ics and creative-Al & Live coding per-
formances with participants’ systems at music
venue

5 Artist Residence Project showcases + Participant
demos & Discussion about Sema (experience, re-
quests, future path)

Table 4.1

The core sessions with Sema were delivered on the first day, one
in the morning and the other in the afternoon. The remaining days
had blocks of project work interweaved with inspirational and debate
sessions, garden lunches, and social activities in Brighton.

The first day workshop sessions with Sema consisted of a practical
crash-course and hands-on exploration on language design (Figure
a) and an introduction to machine learning and Tensorflow.js. These

13Counterpoint creative studio, https://ctpt.co/, accessed: 2019-09-19

sessions were preceded by a demonstration of supporting tools, in-
stallation and forking of the Sema repository. We introduced Sema’s
tutorials for language design and grammar specification using ex-
tended BNF, Nearley and Sema’s intermediate language. We went
through simple examples (e.g. Listing [1)) to gradually more complex
while attempting to get everyone up to speed for them to proceed
in autonomous exploration. The machine learning session provided
an overview covering ML concepts and terminology, artistic exam-
ples and applications, and a walkthrough the Tensorflow.js examples
provided with Sema.

Samuel Diggins and Tero Parviainen from Counterpoinﬁ studio
gave a presentation (Figure 4| a) about their projects with computa-
tional design with ML and music participated in the first two days of
the workshop. Shelly Knotts from MIMIC-Durham presented some
examples of the MMLL library for machine listening (Figure 4| b).

In the EMUTE LAB 4 performance evening, six participants per-
formed along other artists in line-up (Figure [5{a). Three participants
performed individually using Sema (Figure a, b, ¢). Marije Baalman
and Henrike Hurtado Mendieta, two artists who were invited to do
a 2-week long MIMIC residency, participated in the workshop, per-
formed at the EMUTE lab evening and also presented their work in a
session (Figure@ a and b). In the same morning workshop participant
also presented their work in the workshop (e.g. Figure |§| c).

3.4 RESULTS There were two new languages created with Sema
during the MIMIC Artist Summer Workshop. One workshop partic-
ipant created a language titled MAIAE and performed with it. The
artist-in-residence Marije Baalman created another new language.
Two other participants customised Sema and performed with the de-
fault language. One of them augmented Sema with 3D graphics and
animations, and sonified the machine learning training stage. The
other performer developed a probabilistic system that communicated

MMATA - Live coding mini-language build upon SEMA, https://github.com/tmhglnd/maial accessed: 2019-09-26

https://ctpt.co/
https://github.com/tmhglnd/maia

MIMIC Workshop

in
fsema
Live Cosfing

Figure 3: a) The MIMIC Artist Summer workshop opening session and b) the language design induction session with Sema at the Sussex

Humanities Lab.

with the live code language to stochastically change tones of the musi-
cal sections. Interestingly, one other participant designed a grammar
with Nearley playground and used it for generating new text in perfor-
mance. Other contributions to Sema included extensions to the inter-
mediate language —‘amsynth’, ‘fmsynth’, ‘oscbank’, i.e. three inter-
mediate language constructs corresponding to an AM synthesizer, an
FM synthesizer and a bank of oscillators. One contribution consisted

of an integration of melody—rndfl7 a pre-trained model from Magenta.
There were very meaningful contributions to the documentation. One
participant refactored the tutorials with more complete and adequate
comments for beginners. Another participant documented the inter-
mediate language. We obtained 12 respondents to our post-workshop
survey. We employed NVivo in a qualitative content analysis of par-
ticipants responses. Participants’ names were anonymized and en-

15Magenta Models, https://github.com/tensorflow/magenta/tree/master/magenta/models, accessed: 2019-09-26

https://github.com/tensorflow/magenta/tree/master/magenta/models

Figure 4: a) Counterpoint presentation on designing with Music and AI, and the b) machine listening session at SHL

coded with labels from the range [MP01-MP12]. The codes employed
to classify textual content included: sema, audio engine, machine
learning, machine listening, grammars, regexp, documentation, tu-
torials, workshop, language design, knowledge, experience, program-
ming language paradigms, community, contributing, goals, challenges,
suggestions, functionality, understandability, learnability, utility, per-
formance, limitations, negative feedback, positive feedback.

Discussion

In this section, we discuss themes synthesized from the analysis of the
main results and primary data.

Signal Engine: Good Audio Quality and Reliability, but
more Flexibility and Transparency Required

The audio quality of Sema’s signal engine was considered good in
general, and in one case, surprisingly solid and reliable for an earlier
implementation. Participants who used Sema in their performances
also had technically good sounding performances. This confirms the
quality and reliability of our signal engine prototype (Bernardo et al.,
2019) in particular for use in a live performance setting. These re-
sults also show that our strategy for implementing a browser-based
signal engine running on its own thread was sound. In one case,
our signal engine implementation enabled the sonification of the ma-

sat(17001
et Sreass(19, OV
F!

= e e :
#owes 18 noisel
o memaiaits map(
o mapierianglel

in

an(#aw(110)
Lok(fopm, =P
by

00, 200.307

I

;
1)
7
'

5 e s mull e, ol

12 1n sampla(MEe 0.5))s 2)

\Rdek, =y
sampla (IR D
14ck(Fops, 1
! pea 10 mul(sampla(\nnsres e
- aeeeptngml (¢ V[FDPE, 2,

rt{sum(ic o8, on, b,

July 25t Tpm, £6
@emutelab, htf

), 10)40:5¢ 1)+
spine(3)s ¥

(wine(0-2)
eap(sine(0-1)s 44

12), 120,

e, e,

Figure 5: a) Poster for the EMUTE LAB 4 night, where b) ¢) d) three participants performed with Sema L

chine learning model training stage. This shows important improve-
ments over previous technical challenges in integrating machine learn-
ing with audio in web-based applications (Grierson et al., 2018), such
as the thread-competing behavior of machine learning, as well as au-
dio clicks and drop-outs. There were a few concerns the recurred
among participants. One other concern was about the limitations of
a browser-based signal engine in terms of processing capacity. This
remains an open question for further research with load tests and
experimentation in live performance scenarios. One possibility is to
explore the trade-offs of an Electron-based build of Sema. There were
also concerns was about the investment required to learn yet another
audio engine implementation when participants took previous effort
with another language—e.g. SuperCollider (McCartney, 2002). In
two cases, there were remarks about how the functional ‘flavour’ and
signal-flow-oriented architecture of the audio engine could limit the
musical outcomes and artistic expression with Sema. Some sugges-
tions included developing support in Sema for procedural and object-

oriented approaches to the intermediate representation. On the other
hand, some remarks pinned these limitations to the language design
workflow. Such aspects are tied to both the musical affordances of
future languages, to the usability of the different components of Sema
and to the language-designer experience, all of which require further
research and are discussed in the next section.

General Usability, Learning Resources and Documentation
Require Improvement

The potential of a language design system for the live coding commu-
nity was considered useful and appealing. However, several aspects
of Sema were considered obscure and very challenging. There were
general difficulties with understanding how to use the intermediate
language in the grammar specification and how to build the AST; or,
understanding how the mechanism of converting the AST with the
intermediate language to audio DSP worked. On one hand, these dif-
ficulties were related to the specifics of the implementation of Sema,

AECESSERTSONTENE
SENTERCE | _ ACCESSORVIEMTINCL |
BESTION | (= bur | - el |
VE [oce | _ cctsssanee | 71t s
7 SN el
Tagng care: | ot | B e
=g hamsor” | ”"‘m’..m.f

Figure 6: Final day presentations with a) b) artists-in-residence showcase and ¢) participants demos

which lacked transparency and abstraction in certain areas and also
failed to provide users with adequate documentation. On the other
hand, these difficulties are intrinsic to language design, which is con-
sidered an advanced topic of computer science. Nevertheless, despite
the cumbersomeness of the language design and grammar specification
workflow, and of manual and external parser compilation, we observed
that people were able to design valid grammars and languages. We got
very positive feedback about the Nearley playground for rapid pro-
totyping and exploration of throw-away grammars. The approach of
using minimal tutorials to support the gradual exploration of custom-
designed languages through adjustments, trial and error, was consid-
ered useful and helpful. However, tutorials were considered mostly
incomplete and beginner un-friendly, with suggestions for supporting
different entry points and skill levels. It is fundamental to improve
the usability of Sema and the complex processes that it leverages with

better learning resources on conceptual knowledge, system documen-
tation, examples and code comments, as suggested. We found that
there is little research on systematic approaches to language design
workflows, documentation and learning resources, particularly for live
coding languages. There is research sharing a common base of HCI
and usability, and focusing on improving API usability (Myers and
Stylos, 2016), on design guidelines (Karsai et al., 2009) and usability
(Barisié et al., 2013) of DSLs, which we are looking forward to explore
with Sema.

Finding the Adequate Approaches, Models, Uses and Data
for Machine Learning in Live Coding Practice

There are compelling opportunities for empowering the live coding
community with new artistic processes which may arise from the inte-

gration of real-time interactive signal processing and machine learning
technologies. Particularly, if such processes are provided in a scalable
and accessible environment such as the Web. This was reflected, for
instance, by the general appreciation for the knowledge improvement
that Sema and our workshop facilitated around different aspects and
layers of ML—e.g. from ML concepts and terminology through to spe-
cific implementations with Tensorflow.js; also, for how Sema and the
workshop attempted to bridge domain-specific concepts of live-coding
music performance and interactive audio, in a playful and accessible
way.

In our surveys and during discussions, we noticed an overall un-
certainty and ambivalence about the utility and use cases of machine
learning in live coding. Further research with Sema will prioritize
reaching an understanding of which ML-algorithms fulfil a specific
live coding use case better. There were interesting workshop out-
comes which can help to lead future research with this question. For
instance, there were remarks acknowledging that the real-time nature
of live coding performance and lack of extensive data sets should be
considered. This hints to the future design of Sema to adhere to the
live coding constraints pf real-time and small data sets, including cu-
ration of machine learning algorithms and probabilistic models (e.g.
kNN, Markov Models, RNN), understanding which ML approaches
are more suitable for these constraints, for instance, interactive ma-
chine learning (Bernardo et al., 2017), and other which may be simul-
taneously valuable for generation, such as transfer learning (Oore et
al., 2018) or reinforcement learning (Jaques et al., 2016).

Design Decisions

The findings and user feedback which we obtained in the workshop
helped us to consider, define and prioritize the main development
goals for the subsequent iterations of our user-centered design explo-
ration. They are as follows:

e Integrate grammar design and parser compilation in Sema’s

workflow

e Define and clarify entry points into Sema to improve learning
resources and documentation

e Explore the links and adequate abstractions for designing work-
flows, GUI, AST, intermediate language, machine learning and
machine listening

e Explore the adequate ML approaches, models and use cases for
live coding

e Design the OSS community strategy and prepare for contribu-
tions

Conclusions

In this paper, we presented Sema, a new Web-based OSS system for
live coding language design and performance with real-time signal
generation and processing, machine listening and machine learning.
We contextualised Sema within the research activities of MIMIC, pre-
sented the underlying motivation for its development, and presented
an overview of the latest technical advances and user research with
Sema. We also discussed the main findings and themes which emerged
from this work. One group of main findings relate to the quality of the
current signal engine implementation and how it enabled to overcome
previous challenges in the integration of ML and audio in Web-based
applications. Another group findings concerned the challenges and
difficulties which users found with the workflows in Sema and general
usability issues. A third group of findings concerns the usefulness of
Sema as a resource for leveraging pedagogical approaches and learning
experiences with ML learning, and which requires further exploration
around the provision of the adequate approaches, models and use cases
for live coding practice. Sema promises utility and value for the live
coding community by filling the gap of systems that support new lan-
guage design. Whilst the potential to enable users to create their own

languages in a simple web-based playground is strong, Sema needs
extensive work to become more usable and welcoming to novices. Fu-
ture work includes writing better learning resources, making the signal
engine more flexible and transparent, and identifying and implement-
ing adequate ML approaches, modes and use cases. We also noticed
how people were not be able to grasp the full potential of ML in live
coding practice, and this is one of MIMIC’s key project objectives.
Finally, in this paper, we used workshop findings to motivate and
present design and development goals for the next design iteration of
Sema. Acknowledgments We would like to thank the participants of
the workshop for their participation in workshop and contributions to
Sema. We would like to thank Marije Baalman and Enrike Hurtado
Mendieta for their inspiring work at the MIMIC residency, participa-
tion in the workshop sessions and contributions to Sema. We would
like thank Samuel Diggins and Tero Parviainen for their inspiring
workshop sessions and contributions to Sema. Finally, we would like
to thank Paul McConnell and Alex Peverett for the documentation
of the workshop. The research leading to these results has received
funding from AHRC through the MIMIC project, ref: AH/R002657/1
https://gtr.ukri.org/projects?ref=AH/R002657/1.

References

Aaron, S., Blackwell, A.F., 2013. From Sonic Pi to Overtone:
Creative Musical Experiences with Domain-specific and Functional
Languages, in: Proceedings of the First ACM SIGPLAN Work-
shop on Functional Art, Music, Modeling — FARM’13. pp. 35-46.
https://doi.org/10.1145/2505341.2505346

Armitage, J., 2018. Spaces To Fail In: Negotiating Gender, Com-
munity and Technology in Algorave. Danc. J. Electron. Danc. Music
Cult. 10, 31-45.

Barisié, A., Goulao, M., Amaral, V., Barroca, B., 2013. Evalu-
ating the usability of domain-specific languages, in: Software Design

and Development: Concepts, Methodologies, Tools, and Applications.
pp. 2120-2141. https://doi.org/10.4018/978-1-4666-4301-7.ch098

Bernardo, F., Grierson, M., Fiebrink, R., 2018. User-
Centred Design Actions for Lightweight Evaluation of an Interac-
tive Machine Learning Toolkit. J. Sci. Technol. Arts 10, 2.
https://doi.org/10.7559/citarj.v10i2.509

Bernardo, F., Kiefer, C., Magnusson, T., 2019. An AudioWorklet-
based Signal Engine for a Live Coding Language Ecosystem, in: Web
Audio Conference. Trondheim.

Bernardo, F., Zbyszynski, M., Fiebrink, R., Grierson, M., 2017.
Interactive Machine Learning for End-User Innovation, in: Proceed-
ings of the Association for Advancement of Artificial Intelligence

Symposium Series: Designing the User Experience of Machine
Learning Systems. pp. 369-375.

Choi, H., 2018. AudioWorklet: The future of web audio, in: Web
Audio Conference.

Dannenberg, R.B., Mercer, C.W., 1992. Real-Time Soft-
ware Synthesis on Superscalar Architectures, in: International
Computer Music Conference, International. pPp- 174-177.

https://doi.org/10.2307/3681016

Earley, J., 1970. An efficient context-free parsing algorithm. Com-
mun. ACM 13, 94-102. https://doi.org/10.1145/362007.362035

Grierson, M., Kiefer, C., 2011. Maximilian: An Easy to Use, Cross
Platform C++ Toolkit for Interactive Audio and Synthesis Applica-
tions, in: Proceedings of The International Computer Music Confer-
ence. pp. 276-279.

Grierson, M., Yee-king, M., McCallum, L., Kiefer, C., Zbyszyniski,
M., 2018. Contemporary Machine Learning for Audio and Music
Generation on the Web: Current Challenges and Potential

https://gtr.ukri.org/projects?ref=AH/R002657/1

Solutions, in: Proceedings of The International Computer Music
Conference.

Jaques, N., Gu, S., Turner, R.E., Eck, D., 2016. Generating Mu-
sic by Fine-Tuning Recurrent Neural Networks with Reinforcement
Learning. Thesis 410-420.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
Volkel, S., 2009. Design Guidelines for Domain Specific Languages.
Proc. 9th OOPSLA Work. Domain-Specific Model.

Kiefer, C., Magnusson, T., 2019. Live Coding Machine Learning
and Machine Listening: A Survey on the Design of Languages and
Environments for Live Coding, in: Proceedings of the International
Conference on Live Coding. Madrid.

Magnusson, T., 2014. Herding Cats: Observing Live Coding in the
Wild. Comput. Music J. 38, 91-101. https://doi.org/10.1162/COM.J

Magnusson, T., 2011. The IXI Lang: A Supercollider Parasite
For Live Coding, in: Proceedings of the International Computer Mu-
sic Conference. pp. 5-8.

McCartney, J., 2002. Rethinking the computer music
language: SuperCollider. Comput. Music J. 26, 61-68.
https://doi.org/10.1162/014892602320991383

McLean, A., 2014. Making Programming Languages to Dance to:
Live Coding with Tidal, in: Proceedings of the First ACM SIGPLAN
Workshop on Functional Art, Music, Modeling —

FARM’14. pp. 63-70. https://doi.org/10.1145/2633638.2633647

McLean, A., 2004. Hacking Perl in Nightclubs [WWW Document).
Perl.com.

Myers, B.A., Stylos, J., 2016. Improving API usability. Commun.
ACM 59, 62-69. https://doi.org/10.1145/2896587

Oore, S., Simon, I., Dieleman, S., Eck, D., Simonyan, K., 2018.
This Time with Feeling: Learning Expressive Musical Performance.
Neural Comput. Appl. 1-24. https://doi.org/10.1007/s00521-018-
3758-9

Roberts, C., Allison, J., Holmes, D., Taylor, B., Wright, M.,
Kuchera-Morin, J., 2016. Educational design of live coding envi-
ronments for the browser. J. Music. Technol. Educ. 9, 95-116.
https://doi.org/10.1386/jmte.9.1.95_1

Roberts, C., Kuchera-Morin, J.A., 2012. Gibber: Live coding au-
dio in the browser. ICMC 2012 Non-Cochlear Sound - Proc. Int.
Comput. Music Conf. 2012 64-69.

Sorensen, A.C., 2018. Extempore: The design, implementation
and application of a cyber-physical programming language. Aus-
tralian National University.

Walkefield, G., Roberts, C., 2017. A Virtual Machine for Live
Coding Language Design. Proc. New Interfaces Music. Expr. 2017
275-278.

Wang, G., Cook, P.R., Salazar, S., 2015. ChucK: A Strongly
Timed Computer Music Language. Comput. Music J. 39, 91-101.
https://doi.org/10.1162/COMJ

Yee-King, M., Grierson, M., D’Inverno, M., 2017.
STEAM WORKS: Student coders experiment more and ex-
perimenters gain higher grades, in: IEEE Global Engineer-
ing Education Conference, EDUCON. IEEE, pp. 359-366.
https://doi.org/10.1109/EDUCON.2017.7942873

Zakai, A., 2011. Emscripten: An LLVM-to-JavaScript Compiler,
in: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications
Companion. ACM.

Live Coding From Scratch:
The Cases of Practice in
Mexico City and Barcelona

Hernani Villasenior-Ramirez
Graduate Music Program, UNAM

hernani.vr@gmail.com

Ivan Paz
Computer Science Department BarcelonaTech
ivanpaz@cs.upc.edu

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

1t is possible to see here: https://fredrikolofsson.com/fOblog/node/7

Abstract

Live coding performance starting from a white screen is commonly
termed from scratch. In this contribution, we present some thoughts
about the possibilities and consequences of this technique, based on
our experience as members of the live coding communities of Mexico
City and Barcelona. For that, we described from scratch rules and
definitions of each community and then, we comment on how this
practice began at each place. We finish the text discussing why we
consider that live coding from scratch is a technique whose practice
can be used as an epistemic tool, through which new creative spaces
and limits are explored.

Introduction

Writing code in a blank document against time is a well known live
coding practice called from scratch. For example, the one hour prac-
tice of Fredrik Olofsson during a hack pact EL the nine minutes live
coding sessions in Mexico Cityff] and Barcelond’| or some networked
performances by Cybernetic Orchestra{ﬂ This practice can be ob-
served either in a concert or as an exploratory process. In this paper,
we reflect on the from scratch live coding technique used in the live
coding scenes of Mexico City and Barcelona, where the 9 minutes
challenge shapes the way to approach it. We also discuss how the
from scratch practice developed a sense of meaning of live coding at
the beginning of the Mexican scene, how this practice have been de-
veloped since then, as well as how the from scratch practice have been
adapted and developed in live coding sessions in Barcelona.

2As you can see in the first videos of the audiocmmcenart Vimeo player: https://vimeo.com/audiocmmcenart

3https://toplapbarcelona.hangar.org/index.php/live-coding-sessions/

4For example, https://youtu.be/vBJeK1wDRJU

mailto:hernani.vr@gmail.com
mailto:ivanpaz@cs.upc.edu
https://fredrikolofsson.com/f0blog/node/7
https://vimeo.com/audiocmmcenart
https://toplapbarcelona.hangar.org/index.php/live-coding-sessions/
https://youtu.be/vBJeK1wDRJU

Motivation

This text is written collaboratively; the ideas presented here about
the from scratch technique and its practice come from our experi-
ence as organizers and participants of the live coding communities of
Mexico City and Barcelona. The text covers different periods of time
and space: the live coding sessions organized by the Taller de Audio
of the Centro Multimedia (CMM) in Mexico City between 2010 and
2014 and the sessions currently organized (since May 2018) by Toplap
Barcelona in the Hangar Center for artistic research of Barcelona [

From Scratch

We begin by stating two possible definitions which ponder to some
extent on the practice in the aforementioned communities and how a
sense of meaning about the live coding practice was built from those
definitions.

Definition and Meaning

A proposed definition of from scratch is to write code in a blank doc-
ument against time. From this proposal these questions arise: What
kind of aesthetics produce this practice? and What it means to write
code as an artistic practice? Back in 2010, in CMM’s Mexico City
community there was not a clear definition of the term live coding be-
yond some references to Toplap website and the SuperCollider JITLib
Help file. So, from scratch worked as a synonym of live coding, that
is to say, in order to consider a computer music or visual performance
as live coding it must began from a blank screen. As Dave Grif-
fiths (2012) observed during his participation in the /vivo/ Sympo-
sium “the from-scratch technique is considered important in Mexico,
with most performances using this creative restriction to great effect”,
or as Eduardo Ledesma (2015) points, when he analyzes the visual
work of Mitzi Olvera, “Mexican-style live coding is considered to be

Shttps://hangar.org

a slightly rougher variety which begins from scratch, not relying on a
pre-programmed material, and slowly builds to greater visual and au-
ral complexity as the performance intensifies” (p. 114). The definition
of live coding in Centro Multimedia can be observed in its web site,
this definition assumed the origin of live coding as sonorous with an
extension to the visual: “live coding is the practice of programming in
real time, usually linked to computer music and with a paragon to mu-
sic improvisation, this activity has also extended to video-animation”
(Centro Multimedia CNA n.d.). Later, this definition changed as-
suming that music and visuals are the aesthetic discourses of live
coding: “live coding is the practice of writing code live to generate
aesthetic discourses as music and visuals in real time” (Centro Multi-
media CNA n.d.). The definition used by TopLap_Barcelona is: ‘The
from scratch technique consists of playing live for 9 minutes starting
from an empty screen. In this way, it allows to visualize the high or
low level of the languages (try to play from scratch using, for exam-
ple, Tidal, SuperCollider or Csound), making transparent the tools
(classes, functions, data structures, etc.) that allow the live coder to
carry out the different musical tasks within the performance. These
sessions seek to take advantage of the empty screen restriction and
the 9 minutes to explore new possibilities’ (TOPLAP_BARCELONA,
n.d.). These definitions created common spaces that narrowed the
practice through which the communities identified themselves.

Live Coding from Scratch Experiences
In Mexico City

We have discussed some definitions and the construction of meaning
of the term from scratch, but How live coding started in Mexico? Live
coding sessions in Mexico City began in Taller de Audio del Centro
Multimedia CENART at the end of 2010 after a series of artistic and
educational events. The first antecedent can be seen in the work of

https://hangar.org

CENTRO
MuLTIMEDIA
pp———

hp://

Figure 1: First live coding session, Galeria Manuel Felguérez del Centro Multimedia, Mexico City, December 2010. (By Hernani Villasefior)

multimedia collective mU, formed by Ernesto Romero, Ezequiel Netri
and Eduardo Meléndez who made a few live coding concerts during
200@ Later, in July 2009, the concert Précticas con cédigo Vivdﬂ by
Ezequiel Netri. Education was important to conform the live coding
practice in CMM. We can mention the series of SuperCollider courses
that took place from 2007 to 2014, which included a discussion of the
live coding topic defined by the JITLib and ProxySpace. We can also
mention the courses of Processing, Pure Data, VVVV, OpenFrame-
works and Fluxus that were strong influenced by a FLOSS discourse.
After a few years, regular assistants to these courses had a creative
programming background. The Taller de Audio members thought
how to invite them to take part in the concerts of the CMM. One
proposed activity was to organize computer music concerts that in-
clude the live coding practice using SuperCollider ProxySpace as well
as other techniques and programaﬂ The first concert came true after
a Fluxus workshop, taught by Luis N. Del Angel in 2010, to show the
works of the students in public alongside regular students of other
courses who figured out how to live coding sound for the first time.
The idea was to program from scratch visuals or sound with Fluxus
and SuperCollidelﬂ

After this concert the Taller de Audio continued organizing live
coding sessions in the CMM with the same dynamic: around 12 par-

Shttps://toplap.org/wiki/ToplapEvents

"http://cmm.cenart.gob.mx/cartelera/2009/julio.html} scroll down to Sinescenia

ticipants from an open call organized in pairs, one participant coding
sound while another coding image in a limited period of time estab-
lished in 9 minutes after a few sessionﬂ This is described by Jessica
Rodriguez (2014) who points out the construction of a community
during these sessions alongside the ephemeral and changing nature of
live coding improvisation, what Carolina Di Préspero (2015) refers
as the construction of sociability and subjectivity in practices as live
coding. The first year the Taller de Audio organized one session per
month in the installations of CMM, and in 2012 started to collaborate
with different institutions. That year the First International Sympo-
sium /*vivo*/ was organized dedicated to the topic of live coding.
From late 2010 to 2014, the Taller de Audio organized around 30
live coding sessions from scratch including CMM and different insti-
tutions.

After that period, live coding in Mexico has taken different paths
and modes of production oriented mainly to dance musidE and visual
live coding, as well as different ways to organize events, outside and
inside official institutions. Also, it is possible to observe a strong com-
mitment to visibility and inclusiorﬂ, the development of own tools
and the reflection of the practice inside academic contextﬁ

8This was described in the talk 9 minutes from scratch: a story of live coding in Mexico by Hernani Villasefior and Alexandra Cérdenas, in the Symposium of

Live.Code.Festival, Karlsruhe 2013 (Hutchins 2013).
9http://cmm.cenart.gob.mx/cartelera/2010/diciembre.html#livecoding

Onttp://cmm.cenart.gob.mx/cartelera/2011/enero.html#livecoding

1 For example, Ocelotl et al. (2018) mention that the band RGGTRN “has evolved into a collective that engages in algorithmic dance music and audiovisual improvisation

informed by the Latinx context that revolves around its members”
12For instance, https://hbrdsyqmrs.wordpress.com/

13For instance, https://piranhalab.github.io/comunidad.html

https://toplap.org/wiki/ToplapEvents
http://cmm.cenart.gob.mx/cartelera/2009/julio.html
http://cmm.cenart.gob.mx/cartelera/2010/diciembre.html#livecoding
http://cmm.cenart.gob.mx/cartelera/2011/enero.html#livecoding
https://hbrdsyqmrs.wordpress.com/
https://piranhalab.github.io/comunidad.html

Figure 2: Arinoise (left) and Mitzi Olvera (right), 18th Live Coding
Session in Sciences Faculty UNAM, Mexico City, August 2012. (By
Hernani Villasneor)

From Scratch Rules in the Centro Multimedia Live Coding

Session

e Write code from scratch in order to generate sound or image in
the preferred programming language.

e In nine minutes.

e Stop when the audience applauds.

From Scratch in Barcelona

Ever since May of 2018, from scratch sessions have been carried out
once a month by the Barcelona TOPLAP community@ By the time
the first session was organized, Barcelona has had three Algoraves, live
coding was known, but the from scratch technique was not a common
and well defined practice. The idea was to start the TOPLAP node
with a live coding session using the same rules of the Mexico City
sessions, to emphasize the writing of the code in real time (Barcelona
already had a tradition with languages such as SuperCollider or PD.
However, performances were conducted mostly using prepared sys-
tems). In subsequent events, as in the case of Mexico, modifying
pre-written code was also allowed. Nonetheless, the community con-
tinuously practices from scratch performances in the sessions. Proof
of this are the two from scratch sessions held in January

of 2019 during the /* VIU */ festivaEl a moment that also
brought together the live coding communities of Mexico City and
Barcelona. Unlike the Mexican scene of the late 2010, that with some
exceptions was quite homogeneous in the tools, since the first ses-
sion the polyglotism of the Barcelona scene was clear (SuperCollider,
Tidal, Sonic pi, Max MSP, and C++ were the languages used)@
This immediately brought to the discussion the next questions: How
the differences in design and abstraction level of the programming
language, impact its sonority, complexity (in terms of the number of
lines needed) and readability? Also, what kind of sonority and form
do the performances have, according with the tool, when using only
the original resources that the program has? Since the first session,
the from scratch restriction has been used to explore these questions,
up to the limit of using bash, and C++ to emphasize the possibilities

MTOPLAP Barcelona started as a resident collective in Hangar on May 2018 https://hangar.org/en/residents/collective-residents/toplap/

15https://toplapbarcelona.hangar.org/index.php/viu-en/

16You can see a from scratch session in Barcelona: https://youtu.be/IJPKeKZ6bvO

https://toplapbarcelona.hangar.org/index.php/viu-en/
https://youtu.be/IJPKeKZ6bv0

and aesthetics of working with low level 1anguagee{2]7 or packing the
code into classes to increase the readability and compactness.

From Scratch Rules in the Hangar Live Coding Session

For the public:

1. Live coding sessions are gatherings to practice with public, ei-
ther from scratch or re-writing/modifying written code.

2. All attendees should applaud at the end of 9 minutes (remember
that this is just for fun)

From scratch rules for the coders:

Each live coder (audio or visuals).

1. Start with the blank screen

2. You have 9 minutes to play

Figure 4: Ivdn Paz, Lina Bautista, Gabriel Milldn ang Alicia Cham-
plin, live coding form scratch session, Hangar, Mayo 2019 (By Silvia
Miranda Arana)

Ideas Beyond From Scratch
Consequences for the Performance

In a from scratch performance the live coder demonstrates writing
skills and the unfolding of the piece, as it is constructed in real time,
gives insight to the composer’s mind. The public, who does not know
this practice, tries to understand what is happening during the events.
In this sense, very clear and simple explanations are required. On this
point, Alexandra Cérdenas (EFEAV 2019, 00:01:27) comments that

17In a personal conversation with Niklas Reppel he said that he decided to use C++ in the first from scratch session of Barcelona to emphasize the idea of “not using
anything prepared” after that, in a session during the III International Conference on Live Coding, he received comments saying that he had started with code on the

screen (using his live coding language Megra)

dl $ slow 2 $ s "bdly?" # pan 1
d1 silence|

d2 $ sometimes (rev) $ n "a2«8" # s "supersaw" # pan 0
vowel "e"

d3 § sometimes (striate 2) $ n "a3" # s "supermandolin” # pan 1

Figure 3: Lina Bautista and Citlali Herndndez live coding from scratch, Sala Ricson, Hangar Barcelona, Marzo 2019 (By Ivdn Paz)

it is not necessary to know how to play the piano to enjoy a con-
cert, since certain structures are familiar to the public, for example
where the high and low pitches are located. Little by little, this coarse
structures are being created as the public becomes familiar with the
code. The error that happens during the code writing has been widely
discussed (Collins et al. 2003). Besides coding errors, some failures
appear during from scratch sessions due to constant changes of com-
puters; sometimes no soundcheck or projector test are carried out,
then the input of the projector is different, the sound card is not con-
figured, the screen size is modified or sound does not come. All types
of errors, as they are part of the performance, are embraced by the
live coders and integrated into the aesthetics.

Tools Implications

Live coding from scratch shows the code to the public with the in-
tention of sharing, being open, and to give access to the performers’s
mind (TOPLAP n.d.). Restricting from scratch practice to “vanilla”
distributions of the programming languages (using the programs as
they are downloaded) as some people suggest, also guarantees that
the tools used during the performance can be studied/used by anyone
that downloads the program. In this way the idea of accessibility is re-
inforced. But this maybe doesn’t apply for audience, such as Herrera
Machuaca et al. (2016) observe, they say that after years of perform-
ing in live coding sessions and concerts as Colectivo Radiador “we
began to notice that only the programmers in our audiences received
the performances well. Programmers were interested in the code we
projected on screen, but the rest of the public was less interested”
(p.118). Their solution was to translate their live coding language
into one more related to audience understanding™®| So the open and
access to code can be questioned in relation to the knowledge of pro-

18 This can be observed in the next video: https://youtu.be/m03pay7A4dk
Yhttp://www.emutelab.org/blog/summerworkshop

20Including the data collection of the training set

gramming.

Poetic Implications

As we mentioned, the temporary restriction during from scratch per-
formance pushes the performer to find more efficient code structures
and syntax (e.g. concise, compact, succinct), to, with the least
amount of characters, achieve to develop a complete piece. Time
constraints and starting with a blank screen make the technique from
scratch ideal for visualizing the role of the “level” (e.g. high or low) of
the programming language in performance. This, most of the times,
imprints a specific sonority in the resulting performances. For exam-
ple, the first live coding sessions in CMM Mexico were characterized
to figure out how to perform in short time writing code; sometimes in
nine minutes a SynthDef was written with no sound at the end of the
time, so the question of What means to write code in front of an au-
dience arise at some point? Other times participants used strategies
such as transcribe, memorize, or write minimal lines of code. These
approaches pushed participants to write fast or search for functions of
the programs that do a lot of image and sound with few code; in ref-
erence to Marije Baalman (2015) they were adapting mind and body
to the code as “code embodied by the human” (p.36).

Machine Learning From Scratch: On-The-Fly
Training

During the MIMIC artistic summer workshop held at the University
of Sussex during July of 201@ the current approaches for using ar-
tificial intelligence (machine learning algorithms) in Live Coding were
discussed. One of the current discussions on this issue is whether

https://youtu.be/mO3pay7A44k
http://www.emutelab.org/blog/summerworkshop

the training process of the models should be done offline or on-the-
ﬂym In the second case, the model training can be included as part of
the performance, however the time required depends on the size of the
training data set. One of the performances presented at the end of the
workshop was carried out by Marije Baalman, who trained the model
on stage, so that the training process became part of the performance.
In contrast to some other performances that used pre-trained mod-
els (from which model instances were taken during the performance)
this from-scratch-training had something that remained the live cod-
ing from scratch performances. In this case, the algorithm response,
the data being collected, etc. can be inferred by the public while the
time restriction shapes the performance. From this perspective, the
idea that starting from scratch visualizes the limits and functioning
of what is being written can be extended to the new live coding tools.

The Term of Live Coding as Creative Constraint

On-the-fly writing of code through interactive programming is a way
of approaching tasks where no clear specification of the problem to
be solved can be given in advance, e.g. when the exact form of the
solution is not known in advance or when only a draft of the idea is
available; problems in which we only find the exact form of the so-
lution when it is found. In these situations (which are not unusual
in artistic research), the formal structures of the programming lan-
guage provide the environment to explore, in real time, the different
possibilities to conduct the search within the space. Even when we
already tested certain structures, when performing from scratch, the
restrictions imposed keep us practicing this type of search. The from
scratch practice can be understood as an exploration tool (in specific
conditions) that allows to find the first possibilities of a language, vi-
sualize the available abstraction levels, and glimpse different possible
paths. Then, although the languages change, it is still a valid ap-
proach. As it could be the case of training a machine learning model
in real time (as discussed in Section 5.4).

Conclusions

Live coding from scratch is a creative technique that emphasizes (vi-
sualizes) real-time code writing. When a temporary restriction is
added, the abstraction levels contained in the programming language
(is it low or high level), the design of the program (for example the
cycles in the case of Tidal), and the virtue of the live coder to use
these elements to create a composition or moving images are visu-
alized. The sonority (timbre, structure, form) or the visual part of
the performances exhibits the immediate use of the sound and image
generators, sequencers, task definitions, etc. The tools that the live
coder has more ”at hand”. In live coding, the gesture is expressed
through the code, as it is the code (its writing and its execution)
that conducts the performance. This is emphasized in a from scratch
performance since the public can more easily follow the writing. The
challenge engages the performers since, besides the performance, it is
also a way to explore. It is a way to know the limits of the software,
as well as its possibilities and response in specific conditions. That is,
how far it can go, or what kind of pieces can be made with, for exam-
ple, a vanilla version of SuperCollider in nine minutes. What audio
generators work for tasks such as creating sound textures, synthesiz-
ing kicks, producing melodies, patterns, etc.? From this perspective,
the nine minutes challenge is a way to find new things, to explore the
limits of the software, to find ideas for other compositions. Zlatko
Baracskai once said that if you find it difficult to eat pizza with your
hands, you could try it without hands and then, you will see that
when using only your hands again, it seems the easiest thing in the
world. This analogy illustrates some of the sensations of the chal-
lenge. In the context of the scenes and communities of Mexico City
and Barcelona, live coding from scratch have been practiced at dif-
ferent moments, from where different things can be observed. For
example, in Barcelona, having C+4 and Tidal Cycles in the same
session clearly visualizes the levels of abduction in programming. In
the case of the Mexican scene having more homogeneously distributed
tools, such as SuperCollider and Fluxus, allowed the challenge to be a

shared exercise from which to learn from others (for example, the use
of ProxySpace), thus generating a sense of meaning and sociability of
the live coding practice. In this regard, the definition of a practice
and the construction of a community through a technique.

Acknowledgments

There are many people involved in the organization and conformation
of both scenes and communities. We want to thank all who partici-
pated in live coding sessions, the members of Taller de Audio including
the people of social service, and all in CMM CENART who made de-
sign, documentation, dissemination, tech support and space security,
also the institutions that hosted the live coding sessions. In the case
of Hangar, we thank the whole live coding community involved and
the support of the Hangar team. Hernani Villasenor acknowledges the
support provided by CONACyT through Music Master and Doctoral
Program UNAM.

References

Baalman, M. (2015) ‘Embodiment of code’, in McLean, A., Magnus-
son, T., Ng, K., Knotts, S. and Armitage, J. International Conference
on Live Coding 2015, Leeds, UK, 13-15 July, Leeds: ICSRiM, 35-40.

Centro Multimedia CNA (n.d.) Actividades, available: http://
cmm.cenart.gob.mx/cartelera/actividades.html| [accessed: 25 Oc-
tober 2019]

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003) ‘Live
coding in laptop performance’, Organised sound, 8(3), 321-330.

EFEAV (2019) ‘Escribir cdédigo en directo puede ser todo un
espectaculo’ [video], available: https://youtu.be/c2I_v44ndUc| [ac-
cessed 04 Dic 2019].

Di Préspero, C. (2015) ‘Live coding. Arte computacional en pro-
ceso’, Contenido. Arte, Cultura y Ciencias Sociales, 5(2015), 44-62.

Griffiths, D. (2012) ‘Mexican livecoding style’, dave’s blog of art
and programming, 21 November, available: http://www.pawfal.org/
dave/blog/2012/11/mexican-livecoding-style/| [accessed: 25
September 2019

Herrera Machuca, M., Lobato Cardoso, J. A., Torres Cerro, J. A.
and Lomel{ Bravo, F. J. (2016) ‘Live coding for all: three creative ap-
proaches to live coding for non programmers’, International Journal
of Performance Arts and Digital Media, 12(2), 187-194.

Hutchins, Ch. C. (2013) ‘Live Coding in Mexico’, Les said, the
better, 20 April, available: http://celesteh.blogspot.com/2013/
04/live-coding-in-mexico.html|[accessed: 25 September 2019]

Ledesma, E. (2015) ‘The Poetics and Politics of Computer Code
in Latin America’, Revista de Estudios Hispanicos, 49, 91-120.

Ocelotl, E., Del Angel, L. N. and Teixido, M. (2018)
‘Saboritmico: A Report from the Dance Floor in Mexico’,
Dancecult Journal of Electronic Dance Music Culture, 10(1), avail-
able: https://dj.dancecult.net/index.php/dancecult/article/
view/1066/962 [accessed: 25 September 2019]

Rodriguez Cabrera, A. J. (2014) El cédigo de programacién en
la era Post-media: Andlisis del proceso creativo en las producciones
estéticas visuales y/o sonoras, thesis (B.A.), Universidad Michoacana
de San Nicolas de Hidalgo.

TOPLAP_BARCELONA (n.d.) Live Coding Sessions, available:
https://toplapbarcelona.hangar.org/index.php/live-coding—
sessions/ [accessed: 16 September 2019]

TOPLAP (n.d.) ManifestoDraft, available: https://
toplap.org/wiki/ManifestoDraft [accessed 04 Dic 2019, 18:08]

http://cmm.cenart.gob.mx/cartelera/actividades.html
http://cmm.cenart.gob.mx/cartelera/actividades.html
https://youtu.be/c2I_v44ndUc
http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
http://celesteh.blogspot.com/2013/04/live-coding-in-mexico.html
http://celesteh.blogspot.com/2013/04/live-coding-in-mexico.html
https://dj.dancecult.net/index.php/dancecult/article/view/1066/962
https://dj.dancecult.net/index.php/dancecult/article/view/1066/962
https://toplapbarcelona.hangar.org/index.php/live-coding-sessions/
https://toplapbarcelona.hangar.org/index.php/live-coding-sessions/
https://toplap.org/wiki/ManifestoDraft
https://toplap.org/wiki/ManifestoDraft

Disabled Approaches to Live
Coding, Cripping the Code

Amble Skuse
amble.skuse@plymouth.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

The project takes a Universal Design approach to exploring the possi-
bility of creating a software platform to facilitate a Networked Ensem-
ble for Disabled musicians. In accordance with the Nothing About
Us Without Us (Charlton, 1998) principle I worked with a group of
15 professional musicians who are also disabled. The group gave in-
terviews as to their perspectives and needs around networked music
practices and this data was then analysed to look at how live coding
software design could be developed to make it more accessible. We
also identified key messages for the wider design of digital musical
instrument makers, live coders and performers to improve practice
around working with and for disabled musicians.

Definition of terms

In this paper I will use the terms Disabled and Non-Disabled in line
with the social model of describing Disability (Oliver 1990). The
social model of disability describes how disabled people are not dis-
abled by our bodies, but by a society which creates environments in
which we cannot function. This is the process of society and struc-
tures, actively disabling people. For example, the person who uses a
wheelchair is disabled by the decision not to include lifts and ramps to
a building. It is the design of the environment which disables them.
Following this theory, a person with a fatigue condition is disabled
from taking part in a project because of the long days scheduled or
the distance travelled. The design of the project has disabled the per-
son. A Non-Disabled person is one for whom the structure and design
of society broadly works. I will also use the term d/Deaf which is a
term which refers to two differing communities and political positions
on deafness. Small d refers to those who have partial hearing, or use
English as their first language, and capital D deaf referring to those
who use sign language and consider themselves “culturally deaf” that
is, to live in a more visually orientated culture, outside of spoken
language (Woodward,1972).

mailto:amble.skuse@plymouth.ac.uk

I use the term Disabled Musicians to mean disabled people who
have a professional or semi professional music practice, as distinct
to using music as a therapeutic or community building practice with
disabled people. It may be that some of our findings may be suitable
and transferrable to the therapeutic and community music research
environment,.

Why we did it
Dreams and Possibilities - a manifesto

e We would like to see action from the Live Coding community to
listen to the needs and concerns of disabled musicians around
the making of live coding musics and platforms.

e We would like to see ensembles, rehearsals, conferences and per-
formances which respond to the requirements of disabled people.

e We would also like to see the community provide learning oppor-
tunities for disabled musicians to learn live coding and software
development.

o We would like to see disabled access built into the core of music
technology software.

8

Disabled Access and Universal Design - Why disabled people must be
at the heart of developing technology

The extension of the social model approach is the “nothing about
us without us” concept which holds that those for whom a service,
system or environment is designed, must have a contributing say as
to its design. By incorporating diverse voices in the design of some-
thing, we can more reasonably design something which fits those it
will serve. This work is extrapolated by Jutta Treviranus in her work
on Universal Design.

The first principle of Universal Design, is Equitable Use, and is
broken down into the following four categories.

1. “Provide the same means of use for all users: identical whenever
possible; equivalent when not.

2. Avoid segregating or stigmatizing any users.

3. Provisions for privacy, security, and safety should be equally
available to all users.

4. Make the design appealing to all users.” (Shein, Treviranus,
Brownlow, Milner, & Parnes, 1992).

The next logical step to Universal Design is the concept that ev-
erything that is made, should be made by a wide range of people
for the full range of people. In this way we can ensure that we turn
made for, into made by. By incorporating this into our design we can
avoid cultural appropriation, perpetuating stereotypes, assumptions,
supremacist perspectives, and oppression. For example, a recent de-
velopment of gloves which interpret sign language into spoken text has
met with a negative reaction from some d/Deaf communities (Errard,
2019). Academics from the d/Deaf community roundly criticized the
gloves, which claim to turn sign language into spoken language, for
a number of reasons. Firstly, that the gloves only interpreted alpha-
betic spelling, which is a tiny part of sign language, secondly that the
hand and finger movements are just a small part of signing, which
uses facial movements, mouth movements, and eye movements as a
part of the language. Thirdly, philosophically, the gloves reinforce a
notion that d/Deaf people’s communication is a thing which needs
to be ‘solved’ for non signers, and puts the responsibility for that
back onto the signer, to buy, train and use the gloves for the ben-
efit of the non-signer. This was seen as cultural appropriation and
a colonialist approach to technology and disability. If d/Deaf people
had been included in the conceptualisation of the project, and if the
makers had read and understood disability culture and politics, this

could have been averted. Something more useful and equitable could
have been created. From a development point of view then, it is vital
that approaches to disabled technology come from the community,
with an equitable approach, rather than to fix a problem perceived
by the non-disabled community. One example of this kind of think-
ing comes from The Inclusive Design and Research Centre’s project
Co-designing Inclusive Cities which

‘...offers citizens a way to actively participate in the iter-
ative design and growth of communities that meet their
needs. Including the most unique and diverse needs—the
“edges”—in the co-design process is an effective strategy
to ensure our design stretches and responds to a broader
range of needs. If we reach the edge, the design will also
work better for the centre and will be more flexible and
generous.” (IDRC 2019)

It is this co-design which we can import to music technology, and
specifically Live Coding in order to make it more flexible, robust and
inclusive.

Why Live Coding?

In this paper we specifically focus on live coding as a way of exploring
disabled networked performance, building on a recent strand of live
coding research that considers diversity from various angles (Skuse
& Knotts, 2018; Ocelotl, N. del Angel, & Teixido, 2018; Armitage,
2018; N. del Angel, Teixido, Ocelotl, Cotrina, & Ogborn, 2019). By
making this work about live coding, we have the opportunity to de-
sign things from scratch. Coding is Design. When we code something
we make it new from scratch, and we can make it to suit ourselves.
This allows us multiple levels of engagement with the Universal De-
sign movement, which can support disabled people in making their
own technology, and having access to the skills to adapt it as they see
fit. This shift in power from the “made for” to the “maker” means

that Disabled coders can be at the forefront of countering (potentially
unintentional) ableist music making.

There are also a number of key connections between the concerns
of live coding research and those of disabled studies. Firstly a fo-
cus on open source software potentially responds to a major concern
for disabled artists: the costs of software purchase, maintenance and
deployment to diverse computing platforms. Secondly, live coding
can often be accomplished without a requirement for specific hard-
ware such as MIDI control surfaces, whose buttons, faders and pots
can cause difficulty for disabled people with motor control issues or
upper limb difference. Thirdly, and conversely, live coding’s enthusi-
astic embrace of alternative and diverse programming interfaces con-
nects readily with the use of additional hardware, such as eyegaze
and headmouse controllers, that might be required by people with
particular needs. Fourthly, live coding often takes the form of net-
worked performances using a shared media surface. Moreover, when
such networked systems transmit code rather than sound, bandwidth
requirements are reduced substantially, making them useful to home-
based Disabled artists, for whom the majority of their work may then
be performed over the network. Finally, the work of the Live Cod-
ing community in breaking down expectations about performance and
audience (for example watching someone code is a relatively new pro-
gression in terms of gig expectation) can create an opportunity for us
to rethink how performance can be made more Disabled. Networks
and online presence continue to be a powerful and revolutionary tool
for the Disabled community (Pearson & Trevisan,2015). There are
obviously important concerns around surveillance, facial recognition
technology, racist algorithms, and oppressive regimes (Umoja Noble,
2018; Eubanks, 2018). However, on a very simple level, Disabled peo-
ple with limited mobility, or with limited income are able to meet,
support each other and undertake activism online (Berghs et. al.,
2019). We are still subject to these oppressive technologies of course,
alongside trolling, hate speech and unfair representations in social
and traditional media. But, we are also liberated from bodies and
minds which do not easily meet and communicate in person. In this

way, networked activity offers a means of collaborating specifically
useful to home based disabled people. In this case the question of
the impact of networks can come down to ownership, authorship, and
agency—whose algorithms are these? Who do they represent (and fail
to represent)? How do users have control over changing how some-
thing works, understanding how their data is used, and governing
its use and aggregation. So again, by shifting “made for” to “made
by” we have the opportunity to address power imbalances, structural
oppressions and bias.

What we did

In order to reflect the principles of Universal Design, and ensuring
that the users had as much influence on the process as possible, we
interviewed disabled musicians to find out their requirements and then
attempted to design systems according to our findings. I began by
contacting home-based disabled musicians worldwide using social me-
dia (disabled twitter, Facebook, Instagram). I conducted 15 online
interviews with home-based disabled musicians to explore their ap-
proach to making music, their requirements from a music making
applications (How should it be laid out? What platform works best?
What controller adaptations may be useful? etc.) their requirements
for learning and work-shopping ideas (How long can they concentrate
for? How long can they control the software for? How best to com-
municate during the workshops?), and their requirements for perfor-
mance (Can they do real time performances consistently? Would they
need to pre-record aspects of the work? How long can they perform
for? etc).

The interview process was granted Ethical Agreement by the Uni-
versity of Plymouth Arts and Humanities Research Ethics Commit-
tee, and all data is held in compliance with GDPR, the UK’s Data
Protection Act (2018).

The Interviewees

The interviewees represented a wide range of disabled musicians, and
also included two non-disabled academics who work in the fields of
adaptive music technology and live coding (although one of these
has lived experience of being disabled, they do not currently iden-
tify as disabled). The group of disabled musicians included a range
of backgrounds and experiences, from acoustic performers who had
limited experience of working with music technology to those who
have performed as live coders. The interviewees also represented a
range of impairments, racial identities, genders and sexualities. This
was explicitly chosen as a strategy as to not foreground a white male
perspective. As the pool of ‘disabled musicians who are interested in
networked performances’ is a particularly small group of people, we
were unable to be as diverse as we had hoped. However our group were
reasonably mixed. Disabled identities included limb difference, mo-
bility issues, hypermobility, stroke recovery, d/Deaf, M.E., Diabetes,
Schizophrenia, Autism, and ADHD. 2 Interviewees identified as black
British, 2 as British Asian and the rest as White. 9 interviewees were
male and 6 female.

What we learned
Findings

Findings from the interviews show a wide range of preferences, re-
quirements and adaptations. Those requirements broadly fell into four
categories, physical adaptations, communication preferences (par-
tially sighted / d/Deaf etc), fatigue requirements, social interaction.
We mention this because physical adaptations and communication
preferences are often foregrounded in disabled access projects, whilst
fatigue requirements and ways of structuring activities and social in-
teraction are less commonly considered. The paragraphs below show
the different responses to the questions which were put to the inter-
viewees.

Hardware

There was a roughly even spread between those who favoured the use
of a computer and those who preferred to use a tablet or phone, with
some saying that they would often switch between the two. Prefer-
ences for using a computer included the larger screen size being easier
to view, the keypad being easier to control than a touch screen, that
there is more control over connecting different applications, and that
it is easier to plug in adaptive hardware such as eyegaze or Head-
mouse. Preferences for tablets and phones included being easier and
lighter to transport, that the touchscreen is less impactful on hands
and wrists, that the touchscreen allows interaction for those with less
motorcontrol, and that they are generally cheaper to purchase than a
computer.

Design and Display

The majority of interviewees requested that an electronic music envi-
ronment’s colour scheme and display be customisable, with users able
to choose their own background colour, font type, size and colour. In
addition to this, interviewees requested that the different elements of
a user interface or display are placed in separate windows which can
be moved around the screen, resized, and zoomed in, or out. This
reflects a networked community perspective where each individual is
able to define the circumstances in which they work best. By pro-
viding customizable design and display we give each person (not just
disabled people) the ability to create their own workspace. One of
the interviewees controls his computer with a Headmouse, using his
tongue to move the curser and blowing into a tube to click. The
Headmouse has no double click or right click function, and in order
to ‘ctrl click’ he has to request his assistant to hold down the ctrl
button. For this user it is important that there are no double click or
right click actions. In order to type he has to select a screen alphabet
and click on each letter, this is a slow a laborious process. For this
user, typing proves problematic and laborious.

Barriers to engaging with new music making software

One of the key barriers to engaging with music technology was cost,
a place where the open source live coding community have already
made significant inroads. There were also concerns around whether
using computer coding to make music is a ‘real’ musical activity, and
whether it would be seen as such in the community. Another barrier
was the time it would take to learn a new approach to music making.
Many disabled people have pain and fatigue conditions which means
that they have less time to function on a daily basis. They may only
be able to concentrate or cope with the display screen or controllers
for 10-20 minutes a day. This means that it is important that results
can be heard after a relatively low amount of time working with the
software. In addition to this requirement, two of the interviewees told
me that many disabled music technology applications have a limited
progression, which does not allow for continued growth and learning.
So although the research shows that the disabled musicians would like
to see results fast, they would also like there to be the opportunity to
grow with the software and increase complexity as they learn. Some of
the musicians raised the issue of unnecessary technology being made
for the disabled community without their consultation. As discussed
above with the Sign Language Gloves. A further barrier was raised
around the issue of updating and fixing problems. Much software
is made specifically for disabled people by individual developers and
university departments. However there is limited budget and time-
frame for these projects once the software is built. This then leads
to issues when the software is no longer compatible with the latest
updates, or the disabled person accidentally changes a setting that
requires in depth knowledge to fix. This issue of bespoke software
requires bespoke support which is rarely available. Therefore, there is
a preference for standardized software to be made disabled friendly so
that it is regularly updated along with the mainstream aspects of the
programme. Another barrier was the perceived difficulty of learning
to code computer music, and a gap in knowledge around what live
coding is. In some cases it was considered as an activity where the

musicians would have to start from scratch and was only suited to
programmers or coders.

Preferred methods of learning new software

Methods showed a diversity of preferences, with the majority wanting
to learn by trial and error, with help files to refer to as support. The
quality and accessibility of help files was brought up by at least half
of the interviewees as an issue for learning new software. Our inter-
viewees told us that help files must be written in clear language, in
an accessible font and be consistent throughout the programme. A
small minority preferred to use video tutorials, but with the stipula-
tion that these should be scripted, structured, captioned and given
tags to enable the user to skip through to the section they require.
Video tutorials should show the actions at the same time as the expla-
nation, along with clear captions. The view of the screengrab must
be clear and legible. Interestingly, those who preferred video tuto-
rials were also the people who had the most experience of working
with music technology and live coding. It is possible that this cor-
relation shows that video tutorials are currently more accessible for
those with background knowledge and / or confidence in the field (al-
though more research would be necessary as this is a small sample
size). Only one person said that they would prefer to have someone
help them on a one to one basis, with two expressing that this would
be their absolute last resort due to social anxiety or communication
barriers. Three said that they would find an online workshop situa-
tion difficult due to social anxiety, attention span or communication
issues. Accessing forums for support was also considered to be chal-
lenging for reasons of social anxiety and a fear of being dismissed or
undermined for asking ‘stupid questions’. It was also raised that of-
ten the responses received in forums can be either incorrect or overly
complex, leading to frustration. Finally, there were comments about
how forum environments can often be challenging for those for whom
social interaction is difficult, and can lead to arguments or flaming
due to confusion over the tone of a comment.

What would a disabled friendly gig look like?

The response to this question showed a range of requirements and
preferences amongst the group. In a live environment where the per-
former was present, most welcomed a quiet or silent space where they
could relax before, during and after the gig. It was also mentioned
that many chill out rooms tend to become colonized by groups and
their focus changes from quiet space to alternative music or VIP space.
One of the musicians said a private space for people to go to if they
needed space and quiet would be good for the general audience. There
were also requests for healthy / diet appropriate food and drinks (for
those who have allergies and intolerances) and sugary foods and drinks
(for those with diabetes). A flexible approach to programming (the
running order) was also considered desirable, with musicians having
the ability to rearrange their performance order, or slightly adjust
times based on how they were feeling. However, one of the musicians
said they needed a clear structure and knowledge of what would hap-
pen in which section, and how long each section would be. Other
musicians asked for “relaxed performances”, where the generally ac-
cepted protocols of attending a concert were suspended. One of the
musicians said that he would prefer to blend into something which
had already started and then drop out when he felt he needed to. For
him, arriving at a specific time and being ready to perform was a huge
anxiety trigger. Four of the musicians liked the option of being able
to pre record something and send it in advance in case of illness, and
3 of the musicians said they would prefer to perform in the venue, but
would like the option of a networked performance if they were unable
to make it in person. In addition to these specific needs, all intervie-
wees agreed on wheelchair accessible venues, captioned performances,
signing translation and remote access.

What issues are there around performing live in a networked
ensemble?

Many of the performers cited a lack of eye contact and visible com-
munication between players to be a major concern in playing in a
networked ensemble. Others were concerned about computer latency,
and internet speeds. Concerns around latency were also expressed in
terms of hearing back the ensemble playing out of sync with your own

playing.

Preference for a networked ensemble or live coding ensemble

Three musicians said that they would prefer an opportunity to per-
form via network with other disabled musicians using their existing
musical set up. Four musicians said that they were currently inter-
ested in finding out more about live coding and being part of a live
coding networked ensemble.

Implementing Findings

These responses lead to two specific channels of development, firstly,
what changes could we make to live coding software, which would
support disabled people in becoming part of the community? Sec-
ondly, how might we change our working practices to accommodate
disabled people in ensembles and performances?

Software Design Messages

1. The need for complete flexibility of layout, design and display,
allowing people to create a workspace which works for them.

2. The need for the software to deliver musical results quickly, but
also allow for ongoing progression and development of skills and
complexity.

3. The need for well documented, plain language, accessible help
files.

4. The need for captioning and scanning through video tutorials.

5. The need for the software to be accessible on both computer
and tablet, with the option of using assistive hardware such as
eyegaze or Headmouse.

6. The need for disabled access to be fundamentally a part of the
main programme for any software to reduce issues around up-
dates.

7. The need for more disabled people to be involved in design
and making of their own technology rather than acting as focus
groups for non disabled makers.

Changes in Working Practices

1. Learning and development in the disabled musician community
around Live Coding, and approaches to making music in this
way.

2. The need for performers to be able to dip in and out of obliga-
tions depending on their circumstances, without this being seen
as a negative by others.

3. The need for live performances to be flexible, relaxed, with ap-
propriate rest spaces and nutrition available.

What we are doing next

I am working with the Universal Design Research Centre at OCAD
(Ontario College of Art and Design) to make a software system which
will allow networked performance from a wide range of disabled mu-
sicians on various platforms using various music programmes.

I will then invite the interviewees and a wider group of disabled
musicians to explore the software and begin making music. There will
be several one to one feedback sessions and a discussion group where
the musicians can advise on further potential issues or adaptations.

The group will meet online and explore ways in which we can use
the platform to make music together. Within this group we will create
a “working with” document for each person to outline any needs they
may have around rehearsal or performance etiquette, communication
needs or group behaviours. As a group we will then work to find a way
to work which supports and respects each of those needs equally. This
working practice will reflect a non-hierarchical networked structure,
allowing for flexibility and non-judgmental responses to requests.

References

Armitage, Joanne Spaces to Fail in: Negotiating Gender, Community
and Technology in Algorave, Dancecult: Journal of Electronic Dance
Music Culture, 2018

Berghs, Maria & Chataika, Tsitsi, The Routledge Handbook of
Disability Activism, Routledge 2019

Centre For Excellence In Universal Design, What is universal
design? The 7 Principles, http://universaldesign.ie/What-is-
Universal-Design/The-7-Principles/| Accessed 16th September
2019

Charlton, J. I. 1998. Nothing about us without us : disability
oppression and empowerment, Berkeley, Calif. ; London, University
of California Press

Errard, Micheal, Why Sign Language Gloves Don’t Help,
The Atlantic, 9 November 2017. https://www.theatlantic.com/
technology/archive/2017/11/why-sign-language-gloves-
dont-help-deaf-people/545441/| Accessed September 16th 2019

Eubanks, V. 2017. Automating inequality : how high-tech tools
profile, police, and punish the poor, New York, NY, St. Martin’s
Press

Inclusive Design Research Centre Co-designing Inclusive Cities
https://cities.inclusivedesign.ca/| Accessed 16th September
2019.

N. Del Angel, L, Teixido M, Ocelotl E, Cotrina I, Ogborn
D Bellacode: localized textual interfaces for live coding mu-
sic. International Conference on Live Coding, 2019 https://
iclc.livecodenetwork.org/2019/papers/paper111.pdf

Noble, S. U. 2018. Algorithms of oppression : how search engines
reinforce racism. New York, New York University Press.

Ocelotl, Emilio & N. Del Angel, Luis & Teixido, Marianne.
2018.Saboritmico: A Report From the Dance Floor in Mexico.
Dancecult. 10. 10.12801/1947-5403.2018.10.01.11.

Ogborn, D., Beverley, J., N. Del Angel, L., Tsabary, E., Mclean,
A., Betancur, E. 2017. Estuary: Browser-based Collaborative Pro-
jectional Live Coding of Musical Patterns. International Conference
on Live Coding, Morelia, Mexico.

Oliver, Mike (23 July 1990)The Individual and Social
Models of Disability. Available at: Thttps://disability-
studies.leeds.ac.uk/library/

Pearson, C., And Trevisan, F. (2015) Disability activism in the
new media ecology: campaigning strategies in the digital era. Dis-
ability and Society, 30(6), pp. 924-940.

Roberts, C., & Kuchera-Morin, J. 2012. Gibber: Live Coding Au-
dio in the Browser. Proceedings of the International Computer Music
Conference, 64—69.

Shein, F., Treviranus, J., Brownlow, N. D., Milner, M., & Parnes,
P. 1992. Human-Computer Interaction by People with Physical Dis-
abilities. International Journal of Industrial Ergonomics, 9(2), 171-
181.

http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/
http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/
https://www.theatlantic.com/technology/archive/2017/11/why-sign-language-gloves-dont-help-deaf-people/545441/
https://www.theatlantic.com/technology/archive/2017/11/why-sign-language-gloves-dont-help-deaf-people/545441/
https://www.theatlantic.com/technology/archive/2017/11/why-sign-language-gloves-dont-help-deaf-people/545441/
https://cities.inclusivedesign.ca/
https://iclc.livecodenetwork.org/2019/papers/paper111.pdf
https://iclc.livecodenetwork.org/2019/papers/paper111.pdf
https://disability-studies.leeds.ac.uk/library/
https://disability-studies.leeds.ac.uk/library/

Skuse, Amble & Knotts, Shelly, Diversity = Algorithmic, Interna-
tional Conference on Live Coding, 2018

Woodward, JAames 1972. Implications for sociolinguistic research
among the deaf. Sign Language Studies 1, 1-7.

Live coding in Western
classical music

Alvaro Céceres Muiioz
Theatre, Film, TV and Interactive Media, the University of York
alvaro.caceres@york.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This research project explores how to maximize the usability of live
coding tools (which allow improvising music with programming) for
classical musicians.

To do so, two goals are set for the project: understanding how
live coding can be used in traditional composition, and understand-
ing how do classical musicians feel when live coding. These goals
have been achieved using a prototype for a live coding system, which
is specifically designed for classical musicians.

Current literature and technologies have been studied to think of
potential target users and their skills and needs. Based on this, the
prototype has been designed (both from HCI and programming lan-
guage design perspectives), implemented, and evaluated by classical
musicians.

Results show that experienced composers may benefit the most
from live coding systems, provided they offer enough expressiveness,
responsiveness and feedback, and that their grammar is aligned with
musical language.

Keywords: Live coding, Classical music, HCI, Human-computer
interaction, Usability, Improvisation, Composition, Algorithmic com-
position

Research Question

Western-based music creation largely relies on pattern transformation.
Therefore, programming algorithmic nature seems to match classi-
cal musicians mindset. The hypothesis proposed is that classically-
trained musicians use conventional instruments to improvise and com-
pose music, but they could benefit from live coding. However, current
live coding programming languages are more oriented towards either
experienced programmers or musicians performing electronic music.
Therefore, this research tries to address the following problem: How
can live coding be used in classical music?

mailto:alvaro.caceres@york.ac.uk

Aims and Objectives

Such problem exposes a series of goals to fulfil.

e Address how live coding can be used in traditional composition:
improvisation and programming share things in common (ab-
straction, structuring, immediateness), but classical musicians
may not feel comfortable programming. Live coding systems
should reduce these difficulties while helping them to create mu-
sic more efficiency.

e Understand how classical musicians feel when using live coding;:
to make sure the usability of these systems is maximized for
them.

In order to do this, a prototype for a live coding system has been
developed that allows musicians to create music easily. The system
notation has been designed to be as similar to solfége notation as pos-
sible. Also, it combines code typing with MIDI input, to provide a
balance between algorithmic music generation and traditional instru-
ment playing (which classical musicians are more familiar with). This
prototype has been evaluated with users using qualitative methods to
make sure that it is well suited for their specific needs.

Motivation

Live coding is becoming increasingly popular, with new languages
being released every year. Most of these languages are designed for
sound synthesis and electronic music. Because of this, this project an-
alyzes how live coding could be used in classical music. The hypothesis
for this project has been tested with a high fidelity prototype of a live
coding system (BachTracking), based on preliminary user feedback
and a study of current live coding programming languages.

Background and related work
Live coding programming languages

Several programming languages have been described in this section,
each highlighting different aspects relevant to live coding for classical
music. SuperCollider (Wilson et al. 2011) focuses on sound, has an
object-oriented and decoupled architecture, and its OSC compatibil-
ity makes it the basis of other languages. One of them is SonicPi,
designed for school students (Aaron 2016), by providing intuitive UI
and documentation. TidalCycles controls SuperCollider via MIDI and
OSC and relies on Laurie Spiegel’s pattern transformations (Spiegel
1981) to create new music. It is functional like Extempore (Sorensen
and Gardner 2017), which grants live low-level audio programming
(Sorensen 2014). Other languages like Max and Pure Data (Zim-
mer 2007) use visual paradigms; similarly, OpenMusic (Bresson et
al. 2010) includes graphical score notation. Orca (GitHub 2019) is
visual and text-based, and it uses compact base-36 notation. Gibber
(Roberts et al. 2015) and Serialist (Github 2016) explore abstractions
that feel more familiar to musicians (e.g. a score).

HCI perspective

Magnusson (2019) states that computers are symbolically controlled,
but physically actuated; this can pose Ul mapping problems. Pane
et al. (2002) suggest that “idiomatic” syntax improves programmers
learning process, and so special characters should be avoided whenever
possible. Wanderley and Orio (2002) propose that usable electronic
instruments should be easy to learn, explore and modify, and they
should allow precise timing.

Music composition techniques

Like programming, composition exploits the concept of transforming
small music fragments. Counterpoint (Encyclopedia Britannica 2019;
Jackson 2013) follows this philosophy, using three basic transforma-

Scheduling

Environmeyit setup

Variables

Visual Studio Code extension

Text editor Notifications panel

Text buffer

Shortcuts

MIDI control

Musical notation to MIDI
‘events conversion

Musizal notation to MIDI
‘events conversion

Parsed code processing

Messages

Notifications

Lzw-level scheduling

Scheduler interface

Figure 1: System overview

tions: inversion, augmentation/diminution, and retrograde. Based on
counterpoint, serialism (Forte 1973) abstracts notes as numbers, sets
and vectors of distances (intervals). Spiegel (1981) proposed similar

inverse, join and mirror. Parenthesis are not required, and shorthand
names are available.

techniques, specifically focusing on pattern transformation.

Design

Target users

Table [7.1] shows classical musicians

can be divided into:

User interface

Figure |3 shows the UI proposed for the prototype. The text edi-
tor allows users to edit text without modifying the score. Errors are
displayed in red, to call the user’s attention. Keyboard shortcuts fol-
low consistency whenever possible (Ctrl-S Starts reading, Ctrl-Shift-S
stops reading).

User Music Coding Music
Expertise Expertise Abstraction
Composer High Low High
Player High Low Intermediate
Student Intermediate Intermediate Low
Table 7.1

A system that maximizes usability for these users should take
their specific skills and needs into account (for instance, it should be
possible to write music either note by note or using more abstract
structures).

Language

Figure [1] provides an overview of the system. It offers the metaphor
of an editor, a score and instruments. The score can be updated
and read sequentially. Reading the score sends MIDI to instruments
(keyboards, VSTs...)

The grammar (Figure [2)) tries to be as similar to natural language
as possible. Transformations can process melodies, variables or trans-
formations of any of those. They have been inspired by counterpoint
and Spiegel’s work: transposition, inversion, retrograde, retrograde

e MIDI_INPUT EN
NPUT_PORT

Figure 3: Ul Layout

MIDI note input is available as well, inspired by music notation
software (Avid 2018). Input is activated with a keyboard shortcut,
and it writes notes as plain text (code) in the text editor, so they can
be manually edited if needed.

8 - Inaslvructions Nole W ith Duration — Naote Duration”
Instrudions — Instruction (new Line Tnstruction))" Tomes Repetstzon ~+ temes natural Number
Tnstrudion — EnvirenmenlSetup | Variable Assignmenl | Scheduling Nole =+ I{M'Mm space*)” piteh Aecidental” relativeQctave’
EnvironmentSel —+ startListeningToM DI ListeningToM 101 -
-’ |m|wt|:ra|r-'w||::-w R > sharp’ | Jlart
_ _ N Duration + Pomwer)f Towo dot®
Time = time space” natural Number slash Power() fTwo PewerfTwo —+ matural Number
Tempo —+ Lemnpo space’ Duralion space® equals space® equals -t
mual vl Number spare 2"
Variable Assigronent —+ variable Name space” equals space™ Music new Line = [\m\ r | w2028 \ w2029)
Seheduling — TimeMarker space™ Musiclnstrsction tub -+ [\l
Time Marker —+ AtMarker lefiParenthess + [
AtMarker —+ al space” Bar Marker right Parenihesia - :r
BarMarker <+ bar space® nalural Number slash -+ _r
MusicInstruction — Instrument Schedule Music slop : ."d
slari + "start’
Instrument Schedule Music — Instrument Name spoce® Music aalt + "exit’
Instrurment Name = lelters stari ListeningToMIDI —» 'stariLisieningToM 1 DI’
Music —+ varwable Re ference | Mr‘u’yl Trans formalion stoplListerengToM 11D + "stopListeningToM | DI
Trans[ormation ~+ Transposition | Inversion | Retrograde sharp + ¥
| Retrograde I'nver sion | Mirror | Join [lat » '
Transposition “ transpose space’ Interval (space® Ascendenee)’ dol * :'
space” Music :r : .;
Interval —+ Fuhﬂul(,:lud:!' natural Number malady + “melody | ‘mel
| matural N umber PP i
Asvendeniry —+ ascendding | descending - + "bimd'
Inlerval(Quality —+ inlerval Major | interval Minor | inderval Per fect tennpe » el
| interval Augmented | snterval Dyvminished ik + |V
Inversion —+ tnverse space . Musie resl 'Y
Retrograde — retrograde space ' Music absoluled belave —+ "o natwral Number
Retrograde [nversion —+ retrograde fnverse space® Music “i"""'{f"‘"' » = |"n‘
Mirror + tmarror (space* marror Last)” space® Musie :::f\umln :: E:?:_21+]._¢= _zo—op
Join 4 join space” Music space® Music variableName + [olla — 2A — Z0— 9f*
Melody — MelodyIntegraled Duration variable e ference —+ varubls Nams
Melodylntegrated Duration — melody space™ NolesW ith Duration iniferal Major - 'M
NotesWalh Duralion — NoteW sthDuralion(roup interval Mmor + 'm"
(space™ NoteWith Mﬁm{}nmp;]' interval Pes fect L
NoteWithDurationGroup —+ NoteWithDuration TimesRepetition” inlerval Augmented Sy
| le ft Parenthesis NotesWithDuration right Parenthesis | inperval Diminished .y
P Repetition TimesRepeliti) o fing' | ‘asc’
de sevnding —+ "descending’ | ‘desd
transpose — "transpose’ | "trans’ | "T
T s —+ "imverse’ | "md |1
relrograde = "retrograde’ | ‘retr’ | K
redrograde Inverse —+ "retrogradeInverse’ | "retr | RI'
mirrer —+ "mirror’ | "'mir’ |'M*
Join —+ "join’ | 'S
mirror Last + "murvor Last’

Figure 2: BachTracking grammar

Implementation
Language

In this system EL the language works as a server that listens to text
coming from the UI. This text is parsed and sent to a score object.
The score controls a MIDI scheduler, which communicates with any
connected instruments. It also handles MIDI note input (Figure [4)).

User interface

The UI has been developed as a Visual Studio Code extension, given
its active support (as of 2019). The UI (Figure [3]) has three main
software-based Ul elementsﬂ text editor, notifications panel, and in-
formation/error messages.

Evaluation

Qualitative user evaluation was applied, and it was split into two
phases:

e Online interviews: users followed semi-structured interviews
about their experience making music with technology and live
coding. This was done first to improve the prototype before
testing it.

e In-lab user evaluation: users were asked to read a tutorial ex-
plaining how to use BachTracking during one day, before trying
the system. After that, I gave them a small crash course on how
to use BachTracking with the MIDI keyboard (this was done in
my house, using a laptop and a MIDI keyboard that had been
tested beforehand). Then they were asked to try the system

by playing some music with BachTracking. After this, they fol-
lowed a semi-structured interview to get feedback about their
experience creating music with this prototype.

Online interview

Demographics were balanced in this case. 3 out of 6 participants
were professional composers (in their mid-twenties) with studies at
graduate level from Kings College London, Conservatorium van Am-
sterdam (Netherlands) and Katarina Gurska music academy (Spain).
Two participants were intermediate classical piano students (18-22
years old) at the Professional Music Conservatory of Getafe (Spain).
The remaining participant was a music hobbyist in their late fifties
with intermediate studies in clarinet, who played in brass music bands
in Pinto and Getafe (Spain).

No participants knew about live coding previously, but a few
had programmed before. Composers were used to music technologies
(VST’s, DAW’s. ..), but students mostly used recording and notation
software as their music tools; they explicitly stated they preferred
acoustic instruments. Participants were asked how they create music,
and they described it as first relying on muscle memory and intuition,
and then structuring the idea in a more cerebral way.

Online interviews were conducted after starting to develop the pro-
totype and before testing it with in-lab user evaluation, thus helping
to refine features and functionality.

In-lab user evaluation

Composers used all of the language’s available functions, and they
even felt the freedom to experiment and force the system by using
notes with an incredibly small duration (thus creating blazing fast

1The code can be downloaded from |https://mega.nz/$#$F ! RbpizSxB!EOIbhF jPXB8QbwqzrsZGSw (notice it has only been tested in Ubuntu Studio).

2There are also physical Ul elements such as the MIDI keyboard, keyboard or mouse

https://mega.nz/$#$F!RbpizSxB!EOIbhFjPXB8QbwqzrsZGSw

= Untitled-1 ®

at barl piano mel c d e T g#

4 at barl piano mel o4 g a o5 d g# 06 d#

E TERMINAL

alvaro do killall node; bach

> BachTracking-1an@l.0.0 cuments/education/msc/subjects/research-project/demo/BachTracking/language
> node ./inde:

67

69

74

: 80

. 87
pped listening to MIDI

DodAo Ln4,Col39 Spaces:2 UTF8 LF PlainText @ M1

Figure 4: MIDI note input

sequences of notes). On the other hand, music students used MIDI
input for the most part of their performances.

Participants found some aspects of the system confusing, like not
seeing the bar number printed on the screen, and having to write the
octave number before the note duration.

Suggestions included having access to a live graphical score, a
graphical preview of the code to be executed, and accidentals omis-
sion. The possibility of writing code with MIDI input was proposed to
users to see if they would be interested in that feature; composers and
players thought it could be powerful, but students found it confusing.

Most participants composed rather than improvising live, perhaps
due to their classical background, or to insufficient practice time.

Conclusions
Key results and significance

The following main points can be extracted from this study:

e Expressiveness of the initial musical motif (with traditional in-
strument input), conciseness and transformation composability
can improve live coding usability for classical musicians.

e (lassical musicians may prefer using live coding for fast proto-

typing when writing music.

e Feedback and situation awareness are crucial to provide the re-
sponsiveness classical musicians find in the instruments they are
used to play.

e User-centered design may help to create live coding program-
ming languages that best adapt to the musicians who are going
to use it.

Future work

This project could benefit from more extensive user evaluation, which
could point out features to be included in the system, or usability er-

rors that should be corrected. Increasing training time would allow
participants to feel more comfortable improvising with BachTrack-
ing. Jazz musicians could be considered as participants in the fu-
ture as well. The language could incorporate more features: scales,
tempo transformation, harmony (voice leading), microtonality, larger
structural transformations, form... Developing two syntax modes
(large/understandable, and concise/ergonomic) could make the sys-
tem more flexible, and suitable to both compose and improvise.

References

Aaron, S. (2016). Sonic Pi — performance in education, technology
and art. International Journal of Performance Arts and Digital Me-
dia, 12(2), pp.171-178.

Avid. (2018). Sibelius Reference Guide version 2018.1.
[online] Available at: http://resources.avid.com/SupportFiles/
Sibelius/2018.1/Sibelius_2018.1 Reference Guide.pdf| [Accessed
18 Apr. 2019].

BBC. (2019). Melody - Edexcel - Revision 6 -
GCSE Music - BBC Bitesize. [online] Available at:
https://www.bbec.com /bitesize/guides/zwj2jty /revision/6 [Accessed
9 Apr. 2019].

Bresson, J., Agon, C., and Assayag, G. (2010). OpenMusic — vi-
sual programming environment for music composition, analysis and

research. ACM MultiMedia (MM’11).

Encyclopedia Britannica. (2019). Inversion | music. [online]
Available at: https://www.britannica.com/art/inversion-music
[Accessed 13 Apr. 2019].

Forte, A. (1973). The Structure of Atonal Music. Yale University
Press.

http://resources.avid.com/SupportFiles/Sibelius/2018.1/Sibelius_2018.1_Reference_Guide.pdf
http://resources.avid.com/SupportFiles/Sibelius/2018.1/Sibelius_2018.1_Reference_Guide.pdf
https://github.com/alvarocaceresmunoz/BachTracking/blob/master/tutorial/00-introduction.md
https://www.britannica.com/art/inversion-music

GitHub. (2016). serialist. [online] Available at: https://
github.com/irritant/serialist|[Accessed 5 Mar. 2019].

GitHub. (2019). Orca: Esoteric Programming Language. [online]
Available at: https://github.com/hundredrabbits/Orcal [Accessed
5 Mar. 2019].

Jackson, R. (2013). Counterpoint | music. [online] Encyclope-
dia Britannica. Available at: https://www.britannica.com/art/
counterpoint-music|[Accessed 11 Apr. 2019].

Magnusson, T. (2019). Sonic writing. New York, NY: Bloomsbury
Publications.

Pane, J., Myers, B., and Miller, L. (2002). Using HCI techniques
to design a more usable programming system. Proceedings IEEE
2002 Symposia on HumanCentric Computing Languages and Envi-
ronments. IEEE, pp. 198-206.

Roberts, C., Wright, M., and Kuchera-Morin, J. (2015). Music
program-ming in gibber. ICMC.

Sorensen, A. (2014). GOTO 2014 Programming In Time - Live
Coding for Creative Performances

Andrew Sorensen. [online] Youtube. Available at: https://
www.youtube.com/watch?v=Sg2BjFQnr9s| [Accessed 20 Apr. 2019].

Sorensen, A., and Gardner, H. (2017). Systems level liveness with
extempore. Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software. ACM, pp. 214-228.

Spiegel, L. (1981). Manipulations of musical patterns. Proceed-
ings of the Sym-posium on Small Computers and the Arts, pp. 19-22.

SuperCollider Docs. (2019). 02. First Steps | SuperCollider 3.10.3
Help. [online] Available at: http://doc.sccode.org/Tutorials/
Getting-Started/02-First-Steps.html [Accessed 23 Apr. 2019].

Wanderley, M. and Orio, N. (2002). Evaluation of input devices
for musical expression: Borrowing tools from hci”. Computer Music

Journal 26.3, pp. 62-76.

Wilson, S., Collins, N. and Cottle, D. (2011). The SuperCollider
book. Cambridge, Mass.: MIT Press.

Zimmer, F. (2007). Bang. Hofheim: Wolke, p.133.

https://github.com/irritant/serialist
https://github.com/irritant/serialist
https://github.com/hundredrabbits/Orca
https://www.britannica.com/art/counterpoint-music
https://www.britannica.com/art/counterpoint-music
https://www.youtube.com/watch?v=Sg2BjFQnr9s
https://www.youtube.com/watch?v=Sg2BjFQnr9s
http://doc.sccode.org/Tutorials/Getting-Started/02-First-Steps.html
http://doc.sccode.org/Tutorials/Getting-Started/02-First-Steps.html

Live Coding Tools for
Choreography: Creating
Terpsicode

Dr. Kate Sicchio
Virginia Commonwealth University
ksicchio@vcu.edu

Zeshan Wang
Virginia Commonwealth University
wangz24@Qmymail.vcu.edu

Marissa Forbes
Virginia Commonwealth University
forbesmc@mymail.vcu.edu

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Terpsicode is a developing mini programming language for live coding
dance performance scores. This paper explores the process of creat-
ing a choreographic patterning language using images, and discusses
the creation, capturing, and naming of movement. It also reflects on
the premiere performance using this system with a live coder and im-
provising dancer and how score-making with code may be translated
by a performer. The final result of this venture seeks to provide a
computer language for choreography that utilises dance terminology
alongside visual performance scores that may be used within various
improvising settings.

Introduction

This paper discusses an ongoing process in the development of a pro-
gramming language for choreography. It explores the idea of sampling
movement through still images as a way of forming discrete units for
creating patterns over time. These patterns in turn become composed
through algorithmic processes. The main goal of the language is to be
utilized within live coding practices, as seen in previous work around
choreography, and in real time score making[1]. The language itself is
meant for a choreographer to utilise when creating work, building off
of choreographic tools by artists such as Myriam Gourfink (Gourfink,
2013), Wayne McGregor or Wllliam Forsythe (de Lahunta, 2014).

Terpsicode will allow for computers and algorithmic processes to
become more integrated into choreographic practices. The unex-
pected outcomes of image concatenation will inspire artists to break
out of habitual movement patterns, which creates new movement pos-
sibilities for choreographers and dancers to consider unexplored av-
enues for creative work and improvisation (Collins, 2011).

mailto:ksicchio@vcu.edu
mailto:wangz24@mymail.vcu.edu
mailto:forbesmc@mymail.vcu.edu

Project Background

Choreography lends itself well to the realm of live coding due to the
nature of dance, and how just within a single performance can al-
ter itself from the so-called score. Unlike music or language, up to
the present there is no widely accepted “language” for transcribing
dance. It cannot be replicated without being experienced, to see or
feel a body moving through time (Birringer, 2013). This inherent
“liveness” and mistranslation of the original is magnified with the
use of live code simply as a medium to invoke reactions from dancers
without thought, and the programmer’s own lack of expectation of
the final outcome of their code.

Within dance, one way of communicating movement is the use of
scores. Scores may be compared to musical scores in that they may
notate a work but more so in dance they are used as a starting point
for movement instructions that are to be performed by a dancer or
dancers. Choreographer Jonathan Burrows (2010) discusses two ap-
proaches to dance scores, one being akin to a classical music score
where there are clear instructions for a piece, but the other being
an inspiration for a performer. “...what is written or thought is a
tool for information, image and inspiration, which acts as a source
for what you will see, but whose shape may be very different from
the final realization.” Score are also common in live arts practices
and have been part of various art movements such as Fluxus in the
1960s. Scores may be given to performers via speech, text, visuals
or other means and may be created before, during or after a perfor-
mance. Many dance improvisation artists work from scores, or sets of
guidelines or instructions meant to be interpreted in order to create
movement in a given time and space.

Because the movement and sequences in dance can be algorithmic
in nature, communication between a programmer and dancer is not
so difficult to accomplish. The body is instructed to move between
basic positions, one after another, forwards or backwards or repeated
in loops, or maybe splitting their interpretations like an if/else state-
ment. These analogies provide a natural transition to transcribe dance

from paper and oral scripts to codes and bits.

Moving Patterns

Developing Terpsicode has taken several steps, during which language,
imagery, and choreography have been developed. This process was
also inspired by the previous performance work Moving Patterns.

Moving Patterns was a live coded dance performance, which uti-
lized DanceDirt[1], a custom library written by Tom Murphy for
TidalCycles[2]. In DanceDirt, the programmer was able to use the
patterning capabilities of TidalCycles to create visual patterns of im-
ages, which were viewed in VLC player. Within the performance,
the images acted as a score for dance improvisation. The piece cre-
ated a feedback loop between the performer, who improvised move-
ment based on the projected images, and the live coder, who selected
the images and composed them in real-time sequences in reaction to
the performer’s movements. The collaboration of these two elements
resulted in a codependent performance in which the coder and the
performer sought direction from each others’ decisions.

However, Moving Patterns made it apparent that TidalCycles did
not have the capabilities to live code choreography in a way that felt
complete for a dance composition. Much of its grammar and func-
tions were based upon principles found in sound, or that result in
specific sonic outputs such as reverb or reverse. The desire to develop
a language more adapted to the vocabulary used when working in a
dance studio arose during this process. Thus, the incentive to design
a choreographic programming language was realized.

Sampling Movement with Photos

One of the questions that live coding visual choreographic scores raises
is what medium is best used to convey instructions or inspiration to
the performer. Still images were decided to be an appropriate medium
due to the atomic nature of photo in capturing movement and their
ability to be sequenced arbitrarily, like shuffling frames in a video.

Such flexibility allows for the spontaneity that defines live coding.
Although images have become a starting point for Terpsicode, other
media such as video or motion capture data may be more appropriate
at a later point in this process of language creation.

The images used to create the visual score are from a large li-
brary of photographs taken through a time lapse camera. The cam-
era took two photos per second of a dancer improvising movement.
This resulted in a range of imagery that could be used for sampling
movement.

*

Similar to how a sound sample is a select moment from a longer
audio track, the still image is a single moment from a larger set of
movements. While this could be seen as problematic in the docu-
mentation of dance, as it is missing key elements of movement such
as spatial paths and dynamics, it provides interesting source mate-
rial for dance improvisation and choreography. Choreographers will
have access to frames of movement that they can piece together in
unconventional ways, and dancers must instantaneously interpret the
connections between those images. These photo libraries reference
the initial Moving Patterns performance, where the use of images as
samples was first implemented as a framework for improvisation.

Tagging Movement

After the images were captured, the clustering algorithm t-SNE was
used to assemble like images together into one document, resulting
in a spread of groupings based on visual similarities. The images
were then labeled according to the dancer’s inferred actions. t-SNE
lacked the ability to understand the body as a three dimensional ob-
ject, leading to discrepancies in how the images were to be labeled.
For example, if the dancer was doing the same movement but facing
different directions, the algorithm recognized the directional shift as
separate from the original. This resulted in similar images existing
in different groupings throughout the document. These unnecessary
separations made labeling the images more difficult. Additionally,

the process of tagging still images of motion unearthed the apparent
gap in kinesthetic understanding of movement versus the ability to
verbalize the action, or rather, one frame in an assumed action.

o

=)
| =
.
o i

s

e
Tehegale) ersion | el e

=
= 1

| [

| - 1:"::‘\]%1«}

cenrse ‘wm“ G | t_.l\:nd ignrn‘

*u.' it ‘n.u lm Resin hﬂ

B:jijml‘ 5 |

Figure 2: Movement terms for development of the grammar and syn-

tax of the programming language.

Manual labeling of frames was done after the initial clusters were
formed, adding a human choreographic approach to the tagging of im-
ages. This process initially started as a simple way of finding groups

of images that would have the same name, but it also came to demon-
strate how the machine learning algorithm is of service to an artistic
process, rather than the art being produced strictly by a computer.

Developing the language

Terpsicode is under development using PEG.js[3] to create a parser
and javascript to create a mini language. In order to populate the lex-
ical grammar, appropriate terminology had to be selected from the
discipline of dance and choreography.

To begin this process, choreographic vocabulary describing move-
ment, timing, and phrasing was collected and collated into categories.
Some of the positional terms were used in tagging the images, while
choreographic terms around compositional phrasing and timing struc-
tures became the key words for function names in the programming
language.

Pseudo code was utilised as a means to determine if the language
had the ability to convey choreographic information, from the pro-
grammer to the computer, in a way that still worked with the domain
specific ways that choreographers communicate with performers. For
example, terms such as “retrograde” or “coin flip” expresses language
that choreographers understand , but must be broken down in or-
der for computers to process. Writing the pseudo code was useful in
determining how pattern structures, timing and rhythms, and move-
ment combinations could be created, as well as what text fragments
the computer must be taught.

Writing a parser to pattern the images in a browser window was
the next step in the development of the mini language. Taking the
pseudo code and applying this to displaying the tagged images was
done in javascript. The tagged images can also be patterned in dif-
ferent orders and the length of time they are displayed are also de-
termined in javascript. Figure [3| gives an example of how the code
appears in the console log and the image appears in the browser.

Further development of the language includes expanding the image
library with more figures, expanding those images outside of the hu-

man form, and building Terpsicode into a working plugin for existing
compilers.

w Bl Conscla 1 E X

&

Figure 3: Terpsicode in the browser calling the tagged images.

Terpsicode in Performance

Though the language is still under development, the first performance
with Terpsicode was May 17, 2019 at the Festival of Algorithmic and
Mechanical Movement in Sheffield, UK, danced by Tara Baker and
live coded by Kate Sicchio. Here, a twenty-minute dance was impro-
vised using a limited lexicon from the mini language, which included
the terms “fall”, “duck”, “walk”, “stomachspiral” and “flick”. Each
word displayed the first tagged image in the directory for that term
for a default time of three seconds. As the words were added via the
live coding language, images were added into a cycle of pictures. If a
number followed the term, that image would appear for the number
specified amount of time. The order, pattern and timing of the images
were determined by the live coding.

Even with a limited amount of images, language and no real com-

nr
|i

L]
.

L'I
[

l‘!!!

!l :|.| 1'l‘\

1

Figure 4: Terpsicode in performance at AlgoMech Festival, May 2019. Dancer: Tara Baker

positional terms available for the performance, a piece was beginning
to unfold in this improvisation. The dancer was given the instruc-
tions to begin the piece by copying the images and transitioning from
shape to shape. The order and pattern of the images should be demon-
strated clearly for the first minutes of the work. However as the piece
progressed, the dancer was told to respond to the images, giving her
more freedom to interpret the shapes or use the images as a starting
point for further exploration in her movement.

This approach of strictly following the score versus opening it up
for interpretation also affects the live coding of the images. The open-
ing must consider the speed of changes and the complexity of patterns.
If the live coder speeds up quickly they must be aware that it may be
challenging for the dancer to follow. This may mean certain shapes
are not created or an impossible score is created. This in itself is not
an issue as this can lead to create problem solving on behalf of the
dancer, but it should be made aware as a choice of the live coder.
After gaining familiarity with the process, the score becomes more of
an inspiration for the dancer, the live coder is less in control of the
output and therefore playing more with possibilities for the dancer to
explore. These ways of interpreting and working with the visual score
resonate with the definitions above from Burrows (2010). Live coding
becomes an exploration of the possible but not necessarily what is
actually performed because the output is meant to be danced by a
human, who has agency within this work to make the final decision
on what movement is created.

One issue arising from this work was the presence of the code
onscreen next to the images. While this idea was to highlight the
nature of the score being produced live and provide an example of
the TOPLAP Draft Manifesto, it was questioned as part of this work.
The dancer was unclear which to follow at times, the words or the
images. Also having the images next to the words may start to imply
certain movement must be performed when the shape itself is just an
artefact of that movement. This starts to undo some of the reasoning
in using still images as described above. The dancer may have less
autonomy in the pathways of the shapes when text is also presented

as part of the score. More experiments with the text will be explored
in future iterations of this piece.

Summary

The development of a mini language for patterning images to create a
choreographic score is an ongoing exploration in live coding, sampling
movement, and the creation of dance improvisation performance with
technology. There is no predominant choreographic dictionary so key
words were only derived from professional practice. The process of
designing Terpsicode brings to question the naming and vocabulary
used for dance in the context of reformatting to programming syn-
tax and how choreographers may further interrogate the utilization of
live coding within their creative work. Samples of dance movements
were recorded and processed with machine learning algorithms in or-
der to break down some of that vocabulary. Implementation of the
resulting language designed for coding was built on javascript. Fur-
ther development will be made into making Terpsicode more usable.
A first iteration was used in performance to create an image based
score for dance improvisation, demonstrating how this language can
be developed further for this purpose. Future performances will start
to explore more compositional elements in the language as well as
more ways of presenting the final score within the performance.

References

Birringer, J (2013) What score? Pre-choreography and post-
choreography in International Journal of Performance Arts and Digi-
tal Media 9(1):7-13.

Burrows, J (2010) A Choreographer’s Handbook. Routledge: Lon-
don.

Collins, N (2011) Live Coding of Consequence in Leonardo
44(3):207-211.

deLahunta, S (2010) The Choreographic Resource: Technologies
for Understanding Dance in Contact Quarterly 35(2):18-27.

Gourfink, M (2003) L’Innomee. Available from: www.myriam-
gourfink.com/lInnommee.html [accessed Sept 10, 2019].

Sicchio, K (2014) Hacking choreography: Dance and live coding
in Computer Music Journal 38 (1), 31-39.

Sicchio, K (2019) Programming paradigms for the human inter-
preter, International Conference on Live Coding. Available from:
http://icle.livecodenetwork.org/2019/ingles.html [accessed Sept 10,
2019].

The Mégra System - Small
Data Music Composition and
Live Coding Performance

Niklas Reppel
Eurecat Barcelona
nik@parkellipsen.de

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This article describes the Mégra music system, a code-based, stochas-
tic music system that can be used in a live performance context, as
well as for longer compositions. Mégra relies on Probabilistic Finite
Automata (PFA) as its fundamental data structure. A case is made
for the use of PFAs as a data model that can not only be trained
(in the sense of machine learning), but also be interacted with on the
basis of predefined operations and, as a side effect, enables one to cre-
atively use the imperfections that occur when using very small data
sets to infer musical sequence generators with the help of machine
learning methods.

Introduction

Mégra is a code-based system that can be used to create music in
a live performance context, as well as in a composition context. It
allows one to interactively infer or create musical sequence generators
by using the live coding or exploratory coding method.

Its development started out from the idea of, as Fiebrink and
Caramiaux (2018) put it, ‘machine learning in which learning algo-
rithms can be understood as a particular type of interface through
which people can build model functions from data,” and the subse-
quent search for a suitable data model. Further criteria were the
efficiency of the training methods so that they can be used in the
context of real-time music creation, as well as a syntax that reflects
the model well while being sufficiently intuitive for live coding.

The ’imperfections’ which occur when using very small data sets
(small enough to be observed and entered by humans) are a welcome
side effect of the chosen approach.

Furthermore, the system attempts to include methods to manip-
ulate the learned structures by means other than just choosing the
input data. Instead, it aims to employ a model that is more seman-
tically meaningful in comparison to other models currently common
in machine learning and artificial intelligence, such as deep neural

mailto:nik@parkellipsen.de

networks. This semantic quality at a high level should allow for the
definition of more meaningful operations and interactions inside the
model, at a granular level. In that sense, the Mégra language presents
a case study on how a machine learning method can be put into action
within live coding practice.

Section 2 of this paper will evaluate this idea in the contexts of
Algorithmic Composition and the current Big Data trend, or in op-
position of the latter. Section 3 will evaluate the chosen data model
and eventual alternatives. Section 4 will give a brief overview over
the Mégra system, and how the model is used in the context of live
coding. Section 5 will present some usage examples.

Small Data as a Creative Tool

The part of the machine learning world commonly associated with
the Big Data buzzword seems to be dominated by huge data sets and
huge hardware effort. While it is hard to deny that the results are
impressive, they are still mostly beyond reach for people that are not
part of a company or a research group, as neither the necessary hard-
ware (like supercomputers or Al accelerators) nor the data sets are
commonly availableﬂ

Furthermore, ‘black-box’ models that are commonly in use, like
deep neural networks, barely have any semantic significance for hu-
mans (one might say they aren not cognitively available). The seman-
tic meaninglessness of the data models makes a ‘discourse with mod-
els’ (Roberts and Wakefield 2018, p. 303), e.g. by applying meaningful
operations to them, quite hard, apart from ‘shaping model behavior
through data’ (Fiebrink and Caramiaux 2018). Manually modifying
the internal structure of the ‘black box’ would not only be tedious,
but also virtually impossible to do in a controlled manner.

Here is where the idea of Small Data comes into play. The term

came up in different fields, most prominently in marketing (Lindstrom
2016) or in e-Health systems research (Estrin 2014).

There does not seem to be a final consensus on what constitutes
Small Data. The idea is usually characterized in direct opposition
to Big Data, for example by data sets that can be generated by a
single person (Estrin 2014) or that are within the realm of human
comprehension, leading to intuitive insight (Lindstrom 2016). Decen-
tralization of the data sets also plays a role (Pollock 2013).

In this specific context of interactive music creation, the aspect of
smallness also can be extended to direct feedback. While Big Data ap-
plications usually need, in addition to hardware, a lot of time to give
accurate results, small data sets can be immediately evaluated and a
structure inferred within an exploratory, real-time-oriented composi-
tional approach, as is typical for live coding methods.

Furthermore, the idea of smallness can be extended to the model
itself, where the observation of the model or rules inferred from the
data can lead to further insight, as semantically meaningful models
are preferred.

Using small data sets and real-time inference surely won'’t return
‘perfect’ (or perfectly predictable) results (e.g., in the sense of a stylis-
tic imitation that can’t be distinguished from an original). Given the
current state of technology, the representational capacity of the meth-
ods proposed in the following are behind of what is currently achieved
with deep learning methods and the like. In the context of artistic
production, though, this isn’t the only criterion. In fact, it might not
be all that significant as long as the results are inspiring and artisti-
cally valid, with the methods being available to anybody with access
to regular hardware.

In some sense the Small Data idea is also reminiscent of the early
days of computer composition, when neither the amount of data nor
the hardware capacity was anywhere near today’s level, and more

1Tt should be mentioned that in recent times some effort has been made to make machine learning technology more widely available, with projects like the Julia language
(Innes 2018), or, in the context of music (especially synthesis and instrument creation, as opposed to structure generation), the Nsynth dataset and GANSynth (Engel et

al. 2019). Their usefulness in the context of live coding has yet to be evaluated.

domain-specific knowledge may have been needed to achieve valid re-
sults. Today’s technical world allows us to re-create some of this in
real time.

Thus, the idea of Small Data in the given context could be seen
as less of a black box approach, but a more human, democratic use of
machine learning methods (Pollock 2013), not with the goal of giving
accurate predictions or categorizations of the world around us, but
rather for artistic inspiration, by means of discourse with the model
itself.

Probabilistic Finite Automata

Using Markov Chains of different orders for musical sequence gener-
ation is a well-known method in algorithmic composition (Nierhaus
2009). Common Music, for example, provides methods to create se-
quence generators based on those (Taube 2014).

Probabilistic Finite Automata (PFA) (Ron, Singer and Tishby
1996) are a representation of Variable Order Markov Chains, which
combine the predictive power of fixed higher-order Markov chains
(where needed) with a more compact memory footprint.

Mathematically, PFAs are described by a 5-tuple @, %, ', T, IT and
a memory length N, where:

e () is a finite set of states, the states being labeled over ¥ n <
N.

)

e Y is a finite alphabet;

e [’ is the transition function, determining the next state given a
current state and an emitted symbol;

e T is the next symbol probability function, determining the prob-
ability of a symbol

The PFA model isn’t necessarily interesting for its novelty, but
for its versatility, and in this case, the ability to support a semanti-
cally meaningful dialog. The semantic quality (i.e. the capacity for

transmitting meaning) of the model becomes clear if you think of the
elements of the alphabetas musical events. Thus, the states, their
labels and the transitions between them can easily be read in natural
language (“after four repetitions of a bassdrum follows a snare with
50

Probabilistic Finite Automata can be used as sequence genera-
tors, whether they are inferred from user-provided rules or trained
from given sequences of observations. The training and inference al-
gorithms are efficient enough to be used in the context of real-time,
on-the-fly composition (as the examples in the following sections will
show).

Furthermore, it is fairly straightforward to interact with and ma-
nipulate the learned or inferred structures to create variation, either
by adding rules or by manipulating the inferred structures directly
through predefined operations. Thus, PFAs are a good approxima-
tion of the Small Data idea and present a data model that is trainable
in the machine learning sense while also allowing for discourse with
the model through live interaction.

Especially with limited data sets, the model is somewhat intu-
itive. Smaller sequence generators (that might nonetheless produce
interesting results) can be even written by hand or drawn onto a sheet
of paper (Fig. . This intuitive accessibility corresponds well to the
idea of using Small Data for artistic inspiration.

Findings by David Huron might give hints regarding the usefulness
and limitations of the PFA model in relationship to human cognition.
As Huron writes:

In describing conditional probabilities, two concerns are
the contextual distance and contextual size. Some states
are influenced only by their immediate neighbors (i.e.,
small contextual distance). Other states are influenced
only by states that are far away in space or time (i.e.,
large contextual distance). [...] The size of the context
of probabilistic influence is sometimes also called the prob-
abilistic order. [...]

As we will see in later chapters, music exhibits a complete
range of such dependencies. Most of the time, the prin-
cipal constraints are of low probability order and involve
a near context (e.g., one note influences the next note).
But music also exhibits distinctive patterns of organiza-
tion where distant contexts are more influential than near
contexts and the probability order is quite large. (Huron
2006, p. 56)

In the context of live coding, the smaller contexts can be easily
represented by the PFA model, as we will see later on, while, due to
restrictions regarding processing power and time, the larger contexts
are still in the hands of the performer.

Alternative Models

Among alternative models that might fit the Small Data idea, in that
they are comparatively human-readable, one might be Augmented
Transition Networks, as previously applied by David Cope (Nierhaus
2009), even though based on extensive musical corpus analysis rather
than intuitive data entry in a live coding situation.

Generative Grammars or Probabilistic Generative Grammars
(Nierhaus 2009) might also be considered, even though they might
be more suited to offline sequence generation rather than real-time
generation due to the way non-terminal symbols are handled.

The use of these models in the context of live coding needs further
research to determine their practicality.

The Mégra System

In Mégra, the mathematical details are transparent to the user; only
the details essential to interaction made it to the syntax. Also, the
model can be visualized fairly easily, as seen in the code examples and
their visualizations 1-4.

The system embodies the Small Data idea by providing a com-
pact and semantically meaningful syntax both for creating sequence

generators by hand, to gain a better understanding of the underlying
model, as well as for inferring structures from tiny data sets, which
can then again be turned into code, visualized, manipulated, and, of
course, sonified.

Learning, Inferring and Extending Structures, Making Up
Rules

The Mégra system allows for the creation of musical sequence gener-
ators on the fly in several ways. One way is to explicitly specify a set
of transition rules (Listing[1]).

;3 Code Example I: a simple beat generator inferred
from explicit rules

;; see visualisation in Figure 1

(infer ’beat

(events (x (sn)) (o (bd)) (- (hats))) ;; symbol-
to-sound-event mapping,
;; X = snare, o = bassdrum, - = hats
(rules
((x) - 1.0) ;; hats follows snare,
always
((o) - 1.0) ;; hats follow bassdrum,
always
((-) x 0.4) ;; after hats, either
have another snare,
((-) o 0.4) ;; another bassdrum,
((-) - 0.2) ;; ... or, less
frequently, another hats.
((- - =-=-) o 1.0))) ;; after four

sequential hihat sounds, always
emit a bassdrum

Listing 1: Mégra Code Example I, a simple beat generator

Figure 1: Graphical Representation of Code Example 1

Another way is to train a sequence generator from an observed
or made-up sequence (Listing [2]). Once the sequences’ structure has
been inferred, it can be modified in different ways. A straightforward
way would be to export the learned structure as code, such as in the
first example, which is possible, but the amount of code might quickly
grow too big to manually edit it.

;; Code Example II: a more complex beat generator
learned from a pattern
;; see visualisation in Figure 2
(slearn ’beat
(x (sn) o (bd) - (hats)) ;; symbol-to-sound-
event mapping (shorter syntax)
"X-0-X-0-X-0-X~-0-X-0-X-0-X~-0-X~-0-X-
0-X~-0-X~-0-X~-0X~X0~-X~-~-0X~-0X~-~-X0-X~—XO
-X0X-0X-0X-0Xx-xx-0ox") ;; a sample string to
learn from

Listing 2: Mégra Code Example II, Training Generator

@ Thus, a more manageable interface with the model would be to

S X manipulate the learned PFA by inserting additional states on the ba-

@ @ sis of predefined operations, and the actual history of emitted events.

In that manner, it is also possible to start from a very simple structure

R (Listing [3| and Figure [3]) and ‘grow’ the sequence generator succes-
sively by inserting nodes and edges following certain criteria.

;; Code Example III: a very simple starting point, a
nucleus
;; see visualisation in Figure 6
(s ’the ()
(nuc ’nucleus (saw ’a2 :dur 102 :atk 2 :rel 100
lp-freq 1000)))

Listing 3: Mégra Code Example III, Training Generator

Figure 3: Graphical Representation of Code Example 111

) .) The growth operation, as described in the following (Listing |4 and
Figure 2: Graphical Representation of Code Example 11 Figure 4) is an example of this kind of interaction with the model. It

will spawn a new node based on the last one that has been evaluated,
modify the parameters of the formerly emitted event(s) with an av-
erage variance of 0.3, and arrange the new edges in a way that small
loops of three musical events will emerge.

;3 Code Example IV: growth operation
;; successively extend - see visualisation after
extension in Figure 4

(grow ’nucleus :variance 0.3 :method ’triloop)

will stabilize (or perish) after a while, once the resources for further
growth run out. If the context requires a more deterministic outcome,
the Mégra system also allows for the creation of sequence generators
from a more musically oriented description, e.g. from a layered loop
(or pattern) syntax (Listing [5), which translates to the same PFA
model and thus allows for using the same interactions later on.

3mm

Listing 4: Mégra Code Example IV - Growth operation

Figure 4: Graphical Representation of Code Example IV after
growth iterations

The growth method above can again be automated, e.g. by a sim-
ple life-modeling algorithm. This gives each node a certain lifespan
after which they perish and spawns new nodes after a specified amount
of evaluations in the way described above, tied to the availability of a
predefined amount of “resources.” This way, the generated generators

;; Code Example V: layered loop syntax
(s ’beat ()

(cyc ’layer2 "hats ~ ~ hats ~ ~ ~ hats hats") ;;
loop 2
(cyc ’layerl "bd ~ ~ bd sn ~ casio:’hi")) ;;

loop 1

Listing 5: Mégra Code Example V

Time Handling

The examples above rely on a fixed time spacing (no explicit time in-
formation given), but it is also possible to have explicit time control,
with time values specified in milliseconds (Listing [6).

;; Code Example VI: Same as example 1, with some
explicit time values
(infer ’beat
(events (x (sn)) (o (bd)) (- (hats)))
(rules
((x) - 1.0 100) ;; hats follows snare
, always, after 100ms
((o) - 1.0 100) ;; hats follows
bassdrum, always
((-) x 0.4) ;; after hats, either
have another snare,

((-) o 0.4) ;; \dots another bassdrum
, \dots

((-) - 0.2 50) ;; \dots or, less
frequently, another hats (50ms)

((- - =--) o 1.0))) ;; after four
sequential hihat sounds, always
emit a bassdrum

Listing 6: Mégra Code Example VI, a simple beat generator with
some explicit time control

Pragmatic Interaction

;; Code Example VII: Event Streams
(s ’sawtooths () ;; <- This is an event sink.
;3 | Events flow in this direction
B
(prob 30 (rev 0.2)) ;; Modifier! 30% chance to
add some reverb.
(nuc ’nucleus (saw ’a2 :dur 102 :atk 2 :rel 100

lp-freq 1000)) ;; Source

Listing 7: Code Example VII: Pragmatic interaction by modifying
the event stream.

Especially in an exploratory situation it is sometimes helpful to
quickly change certain parameters or create some variation by modi-
fying a parameter with a certain probability.

The Mégra system allows for those pragmatic modifications (prag-
matic in the sense that they’re not necessarily covered by the PFA
model) by altering the event stream with certain operators that select

2Demo: https://vimeo.com/321099751

and modify the parameters of the passing events (Listing[7]), inspired
by what is commonly called Reactive Programming, e.g. as described
in Maier et al. (2010).

Technical Foundations

Mégra is built upon Common Lisp as a base language and utilizes
SuperCollider for sound synthesis. The two communicate via Open
Sound Control.

The Common Lisp language has been chosen for its expressive
power and the syntactical freedom it provides. Furthermore, there
are several powerful libraries for music creation available, most promi-
nently Incudine (Latini 2019) and an ancient, but functional, version
of Common Music (Taube and Finnendahl 2019).

Usage Examples

In the following, two specific usage examples and some more generic
remarks about the usage of the Mégra system will be presented.

Creating a Pattern Syntax on the fly

The Mégra system can be used to create small pattern languages on
the fly by associating sound events with symbols and entering a se-
quence as a stringﬂ The possibilities can be explored by modifying
the string and eventually adding new symbol/sound associations.

The resulting syntax might be somewhat similar to other ap-
proaches (think of Gibber (Roberts n.d.) or FoxDot (Kirkbride
2019)), allowing the application of previous pattern knowledge. But,
as a non-deterministic sequence generator is inferred, the results might
not be totally expected. Code Example IT above (Fig. 3) also follows
a similar idea.

https://vimeo.com/321099751

Simple Language Sonification

Another possible use of this system is to enter a slightly larger, given
data sequence and to associate its symbols with sounds, e.g. to sonify
text snippetéﬂ from ‘simple’ language texts like Toki Pona (Lang
2014).

Performance and Composition

The Mégra system has been continuously used for compositiorﬁ and
live coding concertaﬂ since its inception, which has been an important
aspect in its development process. Especially through the use in a
live situation, many inconveniences in syntax and handling have been
exposed and successively improved, and it is currently approaching a
somewhat stable state. 6 FUTURE OUTLOOK While further simpli-
fying the syntax and increasing expressive possibilities is an ongoing
project, a major future goal is inferring the PFA structures not only
from code input, but also from audio input. That way, a sequence
generator could be created simply by clapping a rhythm, or singing
a melody. This has, as a first step, required some audio feature ex-
traction, which has been done by creating Common Lisp bindings for
the popular Aubio library. As a next step, a method to transfer the
extracted features into the symbolic domain is needed so that they
can be used in the same manner as the code-based input.

Conclusions

With Probabilistic Finite Automata, a trainable data model that still
allows for versatile real-time interaction and thus, discourse with the
model, has been identified and implemented.

From personal experience, engaging in an active discourse with

3Demo: https://vimeo.com/321099989

4Demo: https://ellipsenpark.bandcamp.com/track/hayaoki-ii-raintech

5Demo: https://www.youtube.com/watch?v=IJPKeKZ6bv0 (w/ Turbulente on visuals)

the PFA model, training or inferring sequence generators, keeping or
discarding the results and subsequently applying the mentioned op-
erations to transform the results allows for the frequent discovery of
non-obvious, yet interesting sequences and sound combinations.

My aim with this project was to engage the audience (and myself
as a performer) by creating and exposing a semantically meaningful
discourse with a Small Data model through sound and code.

It does need some practice to be uses effectively, and the pragmatic
interaction (as described in Section 4.3) is still an important part,
especially in the context of performances that require more rapidly-
shifting dynamics, such as Algorave. On its own (without much prag-
matic interaction), the presented system shines in types of music that
unfold more slowly in time.

Nonetheless, having used it successfully in performances so far,
the Mégra system continues to be extended and field-tested.

References

Estrin, D. (2014) Small data, where n=me. Communications of the
ACM, 57(4), pp.32-34.

Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C.
and Roberts, A. (2019) Gansynth: Adversarial neural audio synthe-
sis. arXiv preprint arXiv:1902.08710.

Fiebrink, R. and Caramiaux, B. (2018) The Machine Learning
Algorithm as Creative Musical Tool. In The Oxford Handbook of
Algorithmic Music (pp. 181-208). Oxford University Press. http:
//doi.org/10.1093/0xfordhb/9780190226992.013.23

http://doi.org/10.1093/oxfordhb/9780190226992.013.23
http://doi.org/10.1093/oxfordhb/9780190226992.013.23
https://vimeo.com/321099989
https://ellipsenpark.bandcamp.com/track/hayaoki-ii-raintech
https://www.youtube.com/watch?v=IJPKeKZ6bv0

Huron, D. (2006) Sweet Anticipation. Cambridge, MA, USA: The
MIT Press.

Innes, M. (2018) Flux: Elegant machine learning with Julia. J.
Open Source Software, 3(25), p.602.

Kirkbride, R. (2019) FoxDot: Live coding with Python. [on-
line] FoxDot: Live coding with Python. Available at: https:
//foxdot.org/| [Accessed 7 Sep. 2019].

Lang, S. (2014) Toki Pona - The Language of Good. Tawhid.

Latini, T. (2019) Incudine. [online| incudine.sourceforge.net.
Available at: http://incudine.sourceforge.net| [Accessed 7 Sep. 2019).

Lindstrém, M. (2016) Small Data. St. Martin’s Press.

Maier, I., Rompf, T. and Odersky, M. (2010) Deprecating the ob-
server pattern.

Nierhaus, G. (2009) Algorithmic Composition. Dordrecht:
Springer.

Pollock, R. (2013) Forget big data, small data is the real
revolution. [online] The Guardian. Available at: https://
www.theguardian.com/news/datablog/2013/apr/25/forget-big-
data-small-data-revolution| [Accessed 8 Sep. 2019).

Reppel, N (2019) https://github.com/the-drunk-coder/megra.
[online] Mégra. Available at: https://github.com/the-drunk-
coder/megral [Accessed 7 Sep. 2019].

Roberts, C. (n.d.) [online] Gibber.cc. Available at: https:
//gibber.cc/| [Accessed 7 Sep. 2019].

Ron, D., Singer, Y. and Tishby, N. (1996) The power of amne-
sia: Learning probabilistic automata with variable memory length.
Machine learning, 25(2-3), pp.117-149.

Taube, R. and Finnendahl, O. (2019) Common Music 2.12. [on-
line] GitHub. Available at: https://github.com/ormf/cm [Accessed
7 Sep. 2019].

Taube, R. (2014) Common Music 3. [online]
commonmusic.sourceforge.net. Available at: http://
commonmusic.sourceforge.net/cm/res/doc/cm.html#markov-
analyze| [Accessed 11 Sep. 2019].

Roberts, C. and Wakefield, G. (2018) Tensions and Techniques in
Live Coding Performance. In Oxford Handbook of Algorithmic Music
(pp. 293-317). Oxford University Press. http://doi.org/10.5281/
zenodo.1193540

https://foxdot.org/
https://foxdot.org/
http://incudine.sourceforge.net/
https://www.theguardian.com/news/datablog/2013/apr/25/forget-big-data-small-data-revolution
https://www.theguardian.com/news/datablog/2013/apr/25/forget-big-data-small-data-revolution
https://www.theguardian.com/news/datablog/2013/apr/25/forget-big-data-small-data-revolution
https://github.com/the-drunk-coder/megra
https://github.com/the-drunk-coder/megra
https://gibber.cc/
https://gibber.cc/
https://github.com/ormf/cm
http://commonmusic.sourceforge.net/cm/res/doc/cm.html#markov-analyze
http://commonmusic.sourceforge.net/cm/res/doc/cm.html#markov-analyze
http://commonmusic.sourceforge.net/cm/res/doc/cm.html#markov-analyze
http://doi.org/10.5281/zenodo.1193540
http://doi.org/10.5281/zenodo.1193540

Poly-temporality Towards an
ecology of time-oriented live
coding

Alejandro Franco Briones
McMaster University
francoba@mcmaster.ca

Diego Villasenor
Independent Researcher
diego.vid.eco@Qgmail.com

David Ogborn
McMaster University
ogbornd@mcmaster.ca,

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

The current paper traces the development of three platforms for poly-
temporal live-coding: Canon-Generator, FluentCan and TimeNot.
The platforms rely on concepts and ideas developed by the Mexican-
American composer Conlon Nancarrow and are based on an ongo-
ing collaboration around sonic experimentation and time. The paper
describes how a process of tensions and resistances have become a
productive context for research and knowledge production.

Introduction

The current research has at its core the path opened by the com-
poser Conlon Nancarrow and his life-work on time and music, more
specifically poly-temporal composition strategies. This research is an
on-going critical reflection that has pushed the authors to think differ-
ently about certain problems regarding time, sound, live coding and
poly-temporality. Firstly, it was necessary to produce a conception of
Nancarrow’s work that differs from the main North-American / Eu-
ropean narrative, even resist the tendency to assess Nancarrow as an
expatriate American composer in order to reframe him as a Mexican-
American socialist artist, thus conveying a constellation of implica-
tions that go beyond the conventional understanding of Nancarrow’s
work. Secondly, as access to the artifacts and scores regarding his oeu-
vre are restricted (particularly for people that are not supported by
academic infrastructures), it was necessary to refer mainly to the ideas
and notions that Nancarrow produced and that were interpreted and
analysed by people like Gann, Murcot, Collins, Thomas, Sandoval,
Estrada, among many others. We appropriated these loose sets of
ideas and used them as a creative and imaginative starting point.
And finally, the conversations kept by the authors of this text rely on
the idea of resistance (Franco and Villasenor, 2018). Resisting each
others impulses to dominate the conversation and push forward what
emerged from the tension between the arguments.

The output of this research took its first form as the platform

mailto:francoba@mcmaster.ca
mailto:diego.vid.eco@gmail.com
mailto:ogbornd@mcmaster.ca

Nanc-In-A-Can/Canon-Generator, a series of SuperCollider classes
and functions capable of producing poly-temporality based on the con-
cepts, ideas and strategies of Conlon Nancarrow enmeshed with live
coding’s different conceptions of rhythm and time. From this point,
two diverging parallel paths were enabled. Namely, FluentCan, a Su-
perCollider extension and notation that offers new possibilities to pro-
duce poly-temporal structures in a way that fits the purposes and id-
iosyncrasies of live coding, and the computational notation TimeNot.
The present paper describes the latter in detail, both its notation and
its multi-contextual approach which breaks from some core ideas of
Nanc-In-A-Can in order to expand upon the expressive capabilities
for time-oriented live coding.

The three aforementioned projects critique the infrastructure and
time conceptions of live coding communities, seeking to widen the
possibilities of their practices. The poly-temporal structures enabled
by this notation form a space of resistance that might allow listeners
and performers to experience time beyond the scope of accelerated
and linear neoliberal subjectivity. The present project is an exten-
sive attempt to produce a mode of performance that emerges from
an experience and conception of time as slow, constant, in resistance,
multiple, simultaneous, non-linear, digital/analogue, and rhythmic.

Nanc-In-A-Can/Canon-Generator is a SuperCollider library de-
signed to produce temporal canons, like the ones proposed by Conlon
Nancarrow (Franco and Villasenor, 2018). The ideas of Nancarrow
are explored in order to create new temporal conceptions within the
field of live coding. Notationally Canon-Generator offers an API that
has a compositional focus. It requires the performer or composer to
define a canon with all the traditional parameters one would expect
for it: a sequence for durations and melody, a convergence point, a
list of tempos, and also other less conventional options. This means
that, on the one hand, the musician has to define every one of these
parameters from the very beginning. On the other hand, the musi-
cian, upon reading the code, can have a fairly clear idea of what is
going to happen.

In contrast, the FluentCan extension for SuperCollider is an API

wrapper for Canon-Generator that responds to the necessities of live
coding performances. It offers a highly expressive syntax, various
strategies for providing default values, and powerful tools for express-
ing novel musical ideas in the field of poly-temporality..

TimeNot, is a computational notation that is capable of produc-
ing, in an expressive way, complex rhythmic ideas embedded in poly-
temporal structures. Many relevant aspects of the notation draw its
main features, particularly poly-temporal strategies for music cre-
ation, from Canon-Generator. The notation encourages performers
to project musical ideas further from the present than in the conven-
tional interaction model of live coding.

TimeNot allows the production of tempo canons as in the plat-
forms FluentCan and Canon-Generator but, in addition, it explores
new and expressive ways of representing them by complementing the
production of canons with strategies to describe other forms of tem-
poral organisation such as global durations and a specific form of
rhythm. The notation of TimeNot has been implemented in two dif-
ferent complementary ways with distinct advantages: It is embedded
in Estuary (Ogborn et al. 2017) as a mini-language which allows it to
engage in ensemble dynamics and be integrated in a rich ecosystem
of languages that encourage diverse ways of thinking time and music.
It is also an extension of the platform SuperCollider (Wilson, 2011)
using its IDE and server taking full advantage of its sound-synthesis
power and allowing it to be easily distributed.

Context

The poly-temporality that Nancarrow proposed can be regarded as
highly algorithmic; in it, temporal and pitch mapping functions are
the basic principle. This means that the melodic material of any given
music work (which consists mainly of pitch and duration series) can
by transposed into any tempo or any pitch register. Nancarrow devel-
oped the concept of a convergence point (CP) as a way of organizing
this intricate musical material. The CP is a point in time in which
the formal and the chronological temporalities of a musical idea are

identical. According to Thomas (1999), this strategy allows us to
listen different timelines moving towards the same point in chrono-
logical and formal time. Given that a poly-temporal canon can be
generated very easily by algorithms, it is a musical strategy that can
be implemented in computational settings with relative ease. Collins
(2003, pp 1) describes a compositional system capable of producing
various kinds of tempo canons, a precedent for this notation. More
recently we designed the software Canon-Generator (Authors, 2018).
Canon-Generator provides a programming notation that allows musi-
cians, artists, programmers and other creative users of code to create
multiple and simultaneous sound timelines based on the work of Con-
lon Nancarrow. This software was developed in SuperCollider (Mc-
Cartney, 2002) because of its powerful computational and synthesis
capabilities and its extended use among live coding practitioners in
Mexico City. Listing[I]allows the user to create a major scale in three
different tempos that converge at the fifth event (G, midinote 67).

Can.init;

(
// convergence canon;
“conv = Can.converge(
melody: Can.melody(
[8,8,8,8,8,8,8,8].reciprocal, // 1/8 rhythmic
figures
[60,62,64,65,67,69,71,72]),
cp: 5,
voices: Can.convoices ([50,72.5,75],[-12,0,12])
);
“conv.visualize(s)
)

Listing 1: Canon-Generator

What we find more interesting are the “human-to-human” com-
munication aspects of this notation, including but not limited to the
cognitive dimensions of computational notation (Green, et al. 2001).

This piece of code is not only role-expressive (in Green’s terms) but
also brings to the foreground a series of cultural references that lo-
cate the user of the program within a cultural and socio-political
framework: the work of Conlon Nancarrow and its most salient tem-
poral strategy to establish poly-temporal musical structures: Tempo
Canon. The word ‘can’ also makes reference to the rigid steel or
tinplate container normally used to preserve food which often is re-
lated with vulgar or industrialised products and, in this case, cheap
nourishment for survival. This notation attempts to re-contextualise
and re-appropriate musical strategies often related to a privileged mu-
sic elite and academic activity, that claimed the ideas of Nancarrow
as part of their tradition even though the Mexican-American social-
ist artist required an untraditional context to flourish (Franco and
Villasefior, 2018). The canon generator, by distributing it in commu-
nities away from the people that often control the canon of the music
academy, allows new meanings for the work of Nancarrow.

The notation style of Canon-Generator is heavily embedded in
SuperCollider’s inherent notation and it has a limited scope. There
are some aspects that do not facilitate live coding performance, for
instance: the nested parentheses very particular to SuperCollider.
SuperCollider language is not an expressive notation for rhythm as
time, in this context, is mostly represented through inter-offset du-
rations, namely wait patterns as understood in SuperCollider’s Pat-
tern Library (Harkins, 2009). This action produces a wait pattern,
which is expressed as duration, obfuscating its meaning and compro-
mising role-expressiveness. A more transparent use of the duration
could refer to the total length of a musical idea (which cannot be
expressed easily in the SuperCollider Pattern Library) or the length
of a sound event (which is expressed as legato). Rhythm is more in-
tuitively described in terms of offsets and onsets over an underlying
grid, which can hardly be inferred by the duration value described in
SuperCollider Pattern library. It also requires a binary distribution
to be installed, which is an impediment in some settings. From this
starting point a need for a new notational system that might be capa-
ble of representing the novel and compelling temporal forms already

made possible by Canon-Generator was identified. At this point the
endeavours of the two principal authors of this platform diverged:
Diego Villasefior implemented FluentCan as a wrapper and extension
of Canon-Generator while Alejandro Franco developed the notation
of TimeNot.

Diverging Paths
FluentCan

FluentCan responds to one of the original premises of Nanc-in-a-
Can/Canon-Generator: to design a live coding interface and nota-
tion that can be self-contained in SuperCollider. This has allowed its
integration to a broad ecosystem of software development and prac-
tices; one with strong communities worldwide and which has been
particularly active in Mexico City (Nancarrow’s creative home).

Conceptually FluentCan is a direct response to the particular ne-
cessities of live coding practices, where a flexible, composable and
expressive notation is often desired. Flexibility means that the order
of parameters in the definition of a canon, or the fact that some of
them may be missing, should not be tremendously important: behind
the scenes, the parameters should be put in the correct order and
default values should be provided. Composability suggests that small
ideas should be able to gradually grow and transform through the
course of the performance. And expressivity means that it should be
easy to generate abstractions, be they of canons or of transformations
of canons (for example, allowing the musician to easily use one canon
as a prototype for another).

FluentCan takes its name from the so called “fluent interface”
technique of object oriented programming. Using this technique it
is possible to wrap the data driven and immutable Canon-Generator
API into a notation that can make use of method chaining to build
musical ideas. This simple wrapping offers not just the ability to write
canons in a more efficient way (by providing defaults), but also allows
for inheritance (canonB may inherit it configuration from canonA)

and offers a whole range of methods to transform inherited and non-
inherited data, the most radical of which is .apply (described below).

From a conceptual and processual standpoint, it has allowed
Canon-Generator to enter into a resistant dialogue with TimeNot:
because TimeNot and FluentCan are, so to speak, livecoding native
notations, they have allowed their authors to exchange ideas in a
fruitful dialogue of shared interests.

Syntactic simplicity

Because the new interface provided by FluentCan does not require the
user to provide all the parameters that Canon-Generator needs, it al-
lows them to take a simpler approach for making music. This means
the user can now use FluentCan for making non-canonic structures,
that are effective both syntactically and musically.

// Isorhythmic single voice sequence, 7 notes within
2 seconds. So called ‘color’ comes from notes,
talea’ from durs

¢

Can.init;
¢ = FluentCan(\canl) .notes([60, 62, 67]) .durs([2, 3])
.period(2).len(7) .play;

Listing 2: Code Example 2

This idea can then be easily extended into a temporal canon like
so:

Listing 3: Code Example 3

// Converts into a 2 voice canon with lower voice a
perfect fifth below.
c.transps ([0, -7]).tempos([2, 3]).play;

In this sense, now it is idiomatic to express non-canonic ideas while
at the same time providing the means for the music and musicians to
project these ideas into a poly-temporal dimension.

3.1.2 The .apply case Throughout the TimeNot development pro-
cess, a notation for expressing rhythm called xo notation was devel-
oped; a notation that is similar to ixilang (Magnusson, Thor, 2011)
and Gibber (Roberts, Charlie & Kuchera-Morin, JoAnn, 2012) in
which graphic notation takes an important role. At its core, it con-
sists of a string of x’s and o’s (i.e. xooxooxo) which serves to determine
whether an event should sound (x) or not (o). The concept of the no-
tation itself is conducive to different interpretations and variations.
This has been the case not only between TimeNot and FluentCan,
but also within FluentCan itself. Triggered by the effervescent dia-
logue with the TimeNot philosophy, for FluentCan it was chosen to
allow any implementation of xo notation to be possible and easy to
use. This was the main driving force behind the development of the
.apply method.

The .apply method is a generalization of the necessity to allow for
user generated functions to be used at runtime. The function itself
does nothing more than applying the built up canonic data struc-
ture (inside the FluentCan instance) to a function that returns a new
FluentCan instance (in Haskell style type notation it could be easily
described as FluentCan -; FluentCan). This method can be called
multiple times so that the effects of these calls are composed (see
example below).

The class IsoFluent is one that provides static methods (as pure
functions) which fulfill precisely this interface. Because Canon-
Generator can take functions for transpositiorﬂ the method IsoFlu-
ent.xo creates a transposition function that iterates over it’s melody,
for each voice of the canon (a MidiNote array). Using modulo arith-

metic it returns a new melody with rests in place of a o’s and the
input melody notes in place of the x’s, or when given a number (that
corresponds to the voice index) it returns the input note if the index
voice corresponds to the given number or a rest if not.

Through .apply FluentCan effectively extends Canon-Generator in
a possibly infinite number of ways. It gives the performer the ability
to create and modify their own functions (at compile time or on the
fly). Even more so, it opens Canon-Generator and the exploration
of time to the communal imagination. Now libraries that follow this
interface can be independently developed, each of which may explore
different ideas that nevertheless compose with any other ideas coming
from the community.

Can.init; Can.defaultServerConfig;s.boot;

// Models

m = FluentCan() .period(1.5).1len(5); // model

n FluentCan () .period(2) .len(4); // model 2
FluentCan () .transps ([0, -7]).tempos([1, 1/2]).
period(2); // use this to create canon, tempos
1/2 and 2 work well

o

//custom function for .apply

(
~“aksakish = {|...nums| // input any sequence of
numbers
var aksakXos = nums.collect({|lnl| // make a
list of x’s and o’s
n.collect ({|lil if(i == 0, {"x"}, {"o"})});

}).flatten;
// return a function that will receive the

1For transposing Canon-Generator takes an array of values on the key transp. Each value corresponds to the transposition of the voice that has the same index as the
value. transp takes either an array of numbers ([Number]) or an array of functions ([[Number] -> [Number]]) or a combination of numbers and functions. When provided
a Number, it simply maps the melodic sequence array over a function that adds the given number; if the value is a function [[Number] -> [Number]], it maps the melodic

sequence over it.

FluentCan instance
{|fluentCan|
// do whatever with the instance
fluentCan
.len(aksakXos.size)

.apply (IsoFluent .xo(
aksakXos));

¥
)

// it is possible to switch from the different models
(m, n, o)

a = o.def (\1) .notes([65, 62]).apply(IsoFluent.xo("
x0010")) .cp(2) .1en(7) .play;

(

b = o.def (\2)

.notes ([70, 771])

// ‘applyable’ functions can be composed:

.apply (“aksakish.(7, 5, 3))

.apply (IsoFluent.xo("10")) // voice 0 and 1 altermnate
.cp(3)

.play;

)
(
c = o.def (\3)

.cp(4)

.period (6.5)

.notes ([65, 62, 67, 75])

.len (15)

.apply (IsoFluent.xo("olox0x0"))
.play;

a.pause;
b.pause;

‘c.pause;

Listing 4: Code Example 4

TimeNot

TimeNot was created in a specific context: at McMaster University,
and as a major research project (MRP) by Alejandro Franco in the
MA program in Communication and New Media. Moreover, its devel-
opment has been influenced by the activity in the Networked Imagi-
nation Laboratory (NIL), a space in which the concept of network is
explored broadly and often in relationship with live coding practices.
One notion that networked imagination conveys is the understand-
ing of artistic creation and research as an ecology of — among many
other things — natural and computational languages, artistic styles,
techniques, technologies, strategies, etc. In other words, in the NIL
a heterogeneous set of media is articulated, hacked, developed and
explored in order to produce aesthetic and intellectual works. The
premise that creation depends on an ecological approach to knowl-
edge resonates with Mexico City’s live coding scene (where Alejandro
Franco developed many of his artistic practices), where collective cre-
ation and assemblages of heterogeneous artistic practices are often
prominent. The main idea targeted by this notation is the tempo
canon. However, what is particular about this exploration in the con-
text of the poly-temporal ecology here explored is the many additional
temporal and rhythmic strategies and techniques that can be notated
easily.

The author opted to create a new, independent, software project
based on the ideas of Canon-Generator so the notation could be
adapted to many contexts. TimeNot is now available in two forms:
within the Estuary platform, and as a SuperCollider extension. FEs-
tuary (Ogborn et al., 2017) is an experimental software that can be
defined as a platform for learning and creating, and using live coding
as a main strategy that favours a multilingual approach, and which
makes live coding languages available on a zero-installation basis, like

Gibber (Roberts & Kuchera-Morin, 2012), LiveCodeLab, and Hy-
dra. SuperCollider (McCartney, 2002) has a powerful audio synthesis
engine as well as a well established community of users around the
world. Both platforms respond in different ways to the author’s cul-
tural and social context; these are the best ways to give access both to
a broad, general userbase as well as to key developers and more spe-
cialised audiences. There are other positive aspects of this decision;
the separation of TimeNot and Canon-Generator give room for Diego
Villasenior to develop the notational style embedded in SuperCollider
that would become FluentCan.

|. 4s .| xxxxxXXX
ra: 4:5:6 tr: 0]12|24 cp: last
synths: saw sqr tri pitch: 60 62 64 65 67 69 71 72

Listing 5: Code Example 5

Listing || reproduces the musical scale of the previous Canon-
Generator example and presents a program that exemplifies all the
main possibilities that TimeNot allows: a sequence of global durations
and a rhythm arrangement in line one, a canonic configuration in line
two, and a configuration of instruments and pitch in line three. The
interplay among these four components produces rich poly-temporal
sonic textures. When this example is executed it produces a series
of musical events extending from the moment of evaluation into the
future (a C major scale repeated in three octaves with the temporal
proportions of 4:5:6 over a total duration of 4 seconds).

Strata

The architecture of the TimeNot notation is organised into four main
strata or sub-notations. Three of these allow the user to organise
sound events in time. The last stratum aids the organisation of sound
parameters.

The three time-oriented sub-notations reflect three main temporal
strategies that imply a heterogeneous understanding of temporal rela-
tionships. The first one allows the user to embed the sound output in
a specific overall duration; this allows the user a very intuitive degree
of control over the music material. The second sub-notation provides
an expressive and comprehensive way to create rhythmic structures;
this aspect of the notation was identified as the one that diverges
the most from the possibilities endemic to SuperCollider’s notational
style. The third sub-notation is the stratum in which rhythmic ideas
are transformed into a canon. This is the part of the notation in which
the tempo canon ideas developed by Nancarrow are put into practice.
The last sub-notation provides a simple syntax to invoke instruments
and organise its parameters into different kinds of patterns.

Duration Notation

Having control over the global duration of the canonic/rhythmic struc-
ture helps to achieve an overall view of the result. This stratum rep-
resents time as a succession of events that do not favour detailed cat-
egorisation or differentiation among its internal components. Time
here corresponds to the concept of durée (Bergson, 2002) allowing
users to produce simple sequences of events producing an ever-going
sense of becoming.

The duration of the rhythmic/canonic structure is determined by
a number followed by an s that represents seconds. However, the num-
ber could represent beats in a given tempo by adding a t or indicate
a certain amount of cycles (cps) by adding a c. These multiple ways
of expressing duration respond to the multi-contextual nature of this
notation.

To determine a duration the number should be embedded in a spe-
cial list that uses symbols and separators. The lists that uses the |: |
as a delimiter and the | as an internal separator generate an infinitely
looping musical idea. An unlooped event is delimited by |. .|. A finite
number of repetitions can be expressed with the symbol % followed
by whole number that determines the number of repetitions. If the

duration of the structure is omitted, the default is a 2 second event.

Rhythmic Notation

The rhythmic aspects of the notation can be used independently from
the canonic ones. Nevertheless a minimal rhythmic idea has to be
written for the notation to produce sound. An example of a com-
prehensive use of this rhythmic notation might be the idea in the
following code example, in which an opening idea is presented in 5/8
manually introducing rhythmic onsets and offsets, then it is concate-
nated to an Euclidean pattern representing a tresillo (ie. the Eu-
clidean rhythm that distributes 3 attacks over 8 slots), over a two
attack onset pattern that is repeated two times. Finally, another 5/8
idea is manually expressed to close the musical idea.

[. 8s .|
xoxxo !3:e:8 p: xx #2 xooox samples: hibongo

Listing 6: Code Example 6

Omnset Patterns

Notating minimal rhythmic ideas as onset patterns has two main ad-
vantages; it provides a declarative materiality to the notation, and
it frees the user from being limited to algorithmic structures (such
as Euclidean rhythms), allowing arbitrary organisations that do not
respond to explicit logical or computational patterns.

Patterns are notated with the characters x and o, where x denotes
an attack and o denotes a rest. In the following example, the first pat-
tern produces two attacks followed by 6 rests and the second pattern
produces the Cuban clave rhythm. The following expressions should
be evaluated one at the time, to evaluate both add a ; at the end of
the first expression.

Repeat Patterns

Repetition allows the user to produce meta-metric cycles in which
the same idea is presented until a variation marks the end of a pe-
riod. This can be achieved because the onset patterns and the repeat
patterns can be composed together to express a single musical idea.
With the symbols ! and # we can indicate how to repeat a pattern.
It is possible to create nested ideas within this language, such that a
repeat pattern can contain an onset, repeat or Euclidean pattern. Af-
ter the ! the onset, repeat or euclidean pattern to be repeated should
be written and after the # a value that represents the number of rep-
etitions. The first line in Listing |8 can be simplified as the example
shown in the last section.

!'xx!o#6#2 samples: hibongo

XX000000 XX000000 samples: hibongo
X00X00X0 00X0X000 samples: cabasa

Listing 7: Code Example 7

Listing 8: Code Example 8

3.2.1.2.3 Euclidean Patterns TimeNot’s Euclidean Pattern sub-
notation is a very expressive and complete tool for rhythm which can
integrate embedded onset, repetition and other euclidean patterns.
The non-optional values to be given are n and k values as specified by
Godfried Toussaint (2003). The Euclidean algorithm produces pat-
terns of distribution of integer numbers as evenly as possible. Given n
time intervals and k impulses, this algorithm provides a simple way to
distribute the k impulses over the n time intervals. These patterns are
found in many forms of music, particularly “in sub-Saharan African

music, and world music in general” (Toussaint, 2003, pp. 1). The syn-
tax proposed in this notation is k:e:n, a number representing impulses
and another representing intervals. The first line of the following code
example generates a Cuban tresillo and the second generates a clave
that is the combination of a tresillo concatenated to a 4/4 measure
with onsets only in the second and third beats.

3:e:8 samples: hibongo
3:e:8 0o xo x0 oo samples: hibongo
5:e:8:r:4 p: xx samples: bd

Listing 9: Code Example 9

The k and n values are chained by the operator :e:;There are two
other ways to manipulate the structure produced by this sub-notation:
:r: which creates a rotation value, wherein the pattern produced will
maintain its same number of impulses and same intervals but will
appear starting from a different point of the structure. The operator
p: produces a structure that can be a repeat, an onset or another
euclidean. This pattern becomes the k value and the non-k values
of the time intervals, a series of offsets occupying the same length as
the pattern are produced, if k is xx the non-k will be oo, as in the
example above

Canonic Notation

A fundamental difference between the tempo canons produced by the
earlier Canon-Generator project and those produced by TimeNot con-
cerns the minimal components of a tempo canon. Conlon Nancarrow
was restrained by the media at hand: the player piano. The player
piano can not play two or more notes that are the same, in the same
register, at the same time. To perceive distinct tempos it was nec-
essary to differentiate the voices of the canon somehow. This was
achieved by pitch transposition. In TimeNot, where an alternative
mechanism to differentiate voices is provided, pitch transposition is

not as fundamental. In TimeNot pitch transposition is not a manda-
tory parameter for canonic transformation. Differentiation of voices
is acquired by providing a straightforward mechanism to select instru-
ments. Different voices can be identified by different timbral quali-
ties instead of, or in addition to, pitch and register. Canons can be
thought of as based on samples. In TimeNot, pitch transposition is
optional in the case of pitched instruments and, in the case of un-
pitched (sample-based) instruments, it is incompatible. In this way,
less typing is needed to produce a ”canonic transformation” and the
idea of a tempo canon becomes even more focused on temporal aspects
of the musical ideas.

The model that is implemented in TimeNot so far is what Nancar-
row would have called a “convergence canon”, that is to say a canon
with only one CP and without tempo change per voice.

In TimeNot, the number of voices per canon is decided by the
number of values given to the argument ratio. Ratio is a list of pro-
portions which can have a corresponding list of transpositions that
‘canonise’ the rhythmic structure.

|. 35s .| xoox!5:e:8#5xXx0X000%XX

ra: 13:17:20 tr: 0]5]8 cp: last

synths: saw sqr tri

eu pitch: 60 67 65 68 72 75.5 67 55 56 59 60

Listing 10: Code Example 10

Sound Notation

Sound notation allows the performer to parametrise the sound aspects
of the program. At the moment, there are 5 non-temporal aspects
that can be arranged: instruments, pitch, amplitude, panning and
out bus. If a list of instruments is provided, it will be distributed as
one instrument per voice of the canon. The rest of the sound parame-
ters are organised as sequences that will be replicated exactly in each

voice of the canon. This can be arranged in two different ways: as an
isorhythmic configuration, in which each value is assigned from left to
right until all rhythmic events have been exhausted, or as a Euclidean
distribution that distributes evenly k sound values over n rhythmic
events.

Conclusions

With regards to FluentCan’s .apply method, it is important to remark
that it’s development nevertheless is the direct result of the contra-
puntal dialogue between the authors of both libraries. The original
necessity for this method was to use it to implement a type of xo
notation (as proposed by TimeNot). However its generality was able
to exceed the requirements of this notation (as explained in 3.1.2).
The result was a powerful opening up of both FluentCan and Canon-
Generator to any number of possible extensions and new ideas com-
ing from anyone interested from the SuperCollider and Live Coding
communities. These results (conceptual, social, and technical) even
if tangential in their surface relationship with TimeNot are strongly
linked to it by the network of ideas underlying the conceptual space
that has become Nanc-in-can. Conversely, TimeNot derived its dura-
tion sub-notation from the notion of period that is a product of the
FluentCan development. In an interesting parallel with the properties
of temporal canons, namely, their tendency to continuously diverge
and converge (from which unforeseeable textures emerge); the process
so far followed by the authors has spawned a critical and creative flux
of independent-related ideas that can further find convergence points
in the softwares so far developed or in new ones to come.

TimeNot pushes to its limits the notion of permeable autonomy.
This means that it is part of multiple processes that consume it but
not in its totality. Neither the possibilities enabled by Estuary, the
algorithms inherited from Canon-Generator nor the dialogue that it
maintains with FluentCan are sufficient to explain what TimeNot
might actually be. Although TimeNot stands as an autonomous soft-
ware, it is only possible for it to exist as the outcome of the multiple

explicit and implicit conversations that happen around it. In this
sense, its boundaries are unclear at the same time that its identity
remains unambiguous. As this context can be identified as relevant
to the development of this software a similar pattern can also be
identified in the way its sub-notations are organised. Moreover, it
also stands as a valid reflection on the way the multiple concepts of
time interplay: Poly-temporality, rhythm and duration might be three
ways of explaining time that presents three different perspectives of
the same phenomenon. The ecology that surrounds the development
of TimeNot is also the form that the notation takes and it is, as well,
the way in which it allows artists to think about time: as an ecology.

The authors of the libraries here described, FluentCan and
TimeNot, have paid particular attention to the way that researchers
relate with knowledge. The concept of co-creation used by Donna
Haraway (2015) seems to be relevant here. Co-creation here implies
that knowledge is the product of conversations and exchange of ideas,
but in a way that resistance and tension is not inhibited but fore-
grounded.

Forthcoming (Divergent) Convergences

Our exploration of the multiple temporal dimensions in music has
begun to bring forth fundamental questions:

1. How is time and poly-temporality represented in other domains?
a. What particular dimensions of time are exposed by each of
these domains?

2. How can the calculations involving time become as flexible, free
and liberating, as their results?

e In purely technical means, how can poly-temporal expres-
sions evolve beyond the current strategy of precalculating
each event in advance, into a completely live interaction
that would allow us to interact with time and its effects in
full real time?

The first set of questions beg for platforms other than SuperCol-
lider and the TimeNot language. These platforms need to be powerful
enough to deal with disparate mediums such as audio, graphics, web,
poetry, etc; and should also be capable enough to deal with the larger
scale architecture that dealing with multiple media requires. At their
core, such questions requires a focus on pure time and an architecture
that can route time events into different media effectuations.

The second question demands a disassembling of our current no-
tions for constructing time oriented structures. The diverse elements
that conform these structures must become independent of each other.
Each one must be able to change without needing to stop or restart
the temporal flow of events.

This new perspective and aspiration takes its cue from the experi-
ence in divergent development. What has been experienced so far is a
fertile inter-fluence of independent elaborations over a shared concep-
tual environment, a truly evolving ecosystem made up of experiences
and ideas about time. The first degree of divergence exposed here,
two programs diverging and exchanging ideas, is to be interiorized into
multiple divergences within a single convergent ecosystem-platform:
now the mediums and the parameters of pure time must be allowed to
diverge as well. The future platform should be simultaneously diver-
gent, which means: no single point of focus, no single dominant idea
or way of doing things, etc; and convergent, that is to say, compos-
able ideas feeding into each other, multiple mediums expressing events
organized by singular and multiple polytemporal instances and free
routes for interpretations that expose the nature of time.

References

A F. Blackwell, C. Britton, A. Cox, T.R.G. Green, C. Gurr,G.
Kadoda, M.S. Kutar, M. Loomes, C.L. Nehaniv, M. Petre, C. Roast,
C. Roe, A. Wong, R.M. Young (2001). Cognitive Dimensions of Nota-
tions: Design Tools for Cognitive Technology . Proceedings of the 4th
International Conference on Cognitive Technology. Coventry, UK.

Bergson, Henri (2002). Concerning the nature of Time in Henri
Bergson: Key Writings. Edited by
Ansell Pearson and John Mullarkey, London: Continuum.

Collins, Nick (2003). Microtonal Tempo Canons After Nancar-
row/Jaffe. Proceedings of the International Computer Music Confer-
ence, Singapore.

Franco, B and Villasenor, D. (2018). Nanc-in-a-Can Canon Gen-
erator. SuperCollider library for generating and visualising temporal
canons critically and algorithmically. Proceedings of the International
Conference of Live Coding, Madrid.

Haraway, Donna; Kenny, Martha (2015). Anthropocene, Capi-
talocene, Chthulhu. Art in the Anthropocene. Davis, Heather and
Turpin Etienne. Encounters Among Aesthetics, Politics, Environ-
ments and Epistemologies. London, UK: Open Humanities Press

Harkins, James (2009). A Practical Guide to Patterns.

http://distractionandnonsense.com/sc/A_Practical_Guide_to_Patterns.pdf

Last accessed: 12th August, 2019.

Magnusson, Thor (2011). The IXI Lang: A SuperCollider Parasite
for Live Coding.

McCartney, James (2002). “Rethinking the Computer Music Lan-
guage: SuperCollider.” Computer Music Journal 26 (4). MIT Press:
61-68.

Ogborn, David; Beverley, Jamie; Navarro Del Angel. Luis;
Tsabary, Eldad; McLean, Alex. Betancur, Esteban (2017). Estu-
ary: Browser-based Collaborative Projectional Live Coding of Musical
Patterns. International Conference on Live Coding (ICLC) 2017.

Roberts, Charlie & Kuchera-Morin, JoAnn (2012). Gibber: Live
coding audio in the browser. 64-69.

Thomas, Margaret (1999). Nancarrow’s Temporal Dissonance.
Intégral 13.

Toussaint, Godfried (2003). The Euclidean Algorithm Generates
Traditional Musical Rhythms. School of Computer Science, McGill
University Montréal, Quebec, Canada.

Wilson Scott; Cottle, David and Collins, Nick (2011). The Super-
collider Book. The MIT Press.

Liveness, Code, and
DeadCode in Code Jockeying
Practice

Jamie Beverley
University of Toronto, McMaster University
jbeverley@cs.toronto.edu

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This paper explores notions of ‘liveness’ and ‘code’ to situate emerg-
ing Code Jockeying (ClJing) practices in reference to Live Coding and
blank-slate improvisation. Chun’s (2008) notion of ‘source code as
fetish’ and theory on slow design are employed to critique compul-
sions in Live Coding towards code, liveness, and ephemerality. It
is suggested that ClJing evokes different manifestations of liveness
and code, perhaps deviating from celebrated blank-slate approaches.
The DeadCode (Dead) CJing software is presented; a browser-based,
tablet-friendly, and language-agnostic CJing interface that supports
improvised mixing of pre-written code (‘deadcode’), different code
projections for audience members and performers, and gestural con-
trols. Dead’s divergence from both liveness and normative represen-
tations of code are examined, inviting criticism as to whether the use
of Dead still constitutes ‘Live Coding’.

Introduction

Both ‘liveness’ and ‘code’ are celebrated components of Live Coding
which have provided useful for situating Live Coding within a broader
New Media landscape. Liveness in performance has been closely asso-
ciated with improvisation, as Magnusson (2014, p. 22) articulates in
stating that the “default mode of live coding performance is improvi-
sation”. Blank-slate live coding, in which the performer begins from a
blank interface and develops their performance from scratch (Collins
and McLean 2014), is one mode of performance that especially ex-
hibits livness and improvisation. Such practices have been framed in
distinction from other forms of computer-mediated audio-visual per-
formance that have been critiqued in Live Coding literature for being
overly contrived. For instance, Parkinson and Bell (2015) distinguish
the ‘we all hit play’ performance practices of electronic dance music
producer deadmaub, from those of free improvisation jazz guitarist
Derek Bailey and argue that Live Coding more resembles the latter.

Earlier literature has also differentiated Live Coding from other

mailto:jbeverley@cs.toronto.edu

forms of computer art that rely on conventional Digital Audio Work-
stations (DAWSs) and other graphical user interfaces (GUIs). Collins
et. al (2003) suggest that part of the reason Live Coders gravitate
towards code rather than DAWSs such as Ableton Live or Reason is
to escape the rigidity of such “fixed interfaces” in favor of more im-
provisational, live, and perhaps risky tools. Blackwell and Collins
(2005) similarly contrast Ableton Live with the ChucK (Wang et. al
2015) Live Coding language. More recent research has explored the
continuum between highly graphical interfaces and text-based pro-
gramming languages, augmenting GUIs with scripting capabilities,
and vice-versa (e.g. Gibber (Roberts and Kuchera-Morin 2012), Gib-
berwocky (Roberts and Wakefield 2016), and Visor (Purvis et. Al
2019))

The Live Coding practice of sharing one’s screen aims to achieve
transparency and performance theatrics through both liveness and
code. Code provides a declarative expression of the performer’s cre-
ative process, while its projection serves to convince an audience of
its live composition. The TOPLAP Manifesto Draft (TOPLAP 2010)
suggests that this composition of liveness and code distinguishes Live
Coding from more obscurant performance practices, in which the au-
dience cannot be confident that the performer has not just hit play on
a pre-recorded set and is checking their emails. Moreover, as Rohru-
ber et. al (2007) articulate, the practice of sharing one’s screen in
live performance can facilitate “public reasoning” between performers
and audience members over processes that are normally deliberated
behind the closed doors of a studio. While compulsions towards both
‘liveness’ and ‘code’ have motivated exciting new forms of expression
that challenge and build upon previous forms of computer-mediated
art, both performance qualities can be critiqued in light of the es-
tablished and continually evolving practices of Live Coding. This
paper explores some of these critiques and situates Code Jockeying
(CJing) as a hybrid practice that combines elements of Live Coding
with other audio-visual performance practices that were once framed
in opposition to (or to some extent separate from) Live Coding. Such
opposing practices include dependency on pre-scripted content, heavy

reliance on graphical software abstractions, and other deviations from
‘liveness’ and ‘code’.

The proceeding section employs Chun’s (2008) conception of code
as fetish to challenge practices that position source code at the cen-
ter of Live Coding. The temporal politics of liveness, speed, and
ephemerality in Live Coding are then likened to the precarity of the
entrepreneurial ‘gig economy’. The DeadCode (Dead) CJing software
is introduced and examined, indicating how it responds to some of
the critiques presented while also perhaps diverging from the prin-
ciples that initially distinguished Live Coding from other forms of
computer-mediated art.

Live Coding and Code Fetishism

In ‘On “Sourcery,” or Code as Fetish’, Chun (2008, p. 301) critiques
how “software has recently been posited as the essence of new me-
dia, and knowing software as a form of enlightenment”. For instance,
speaking in reference to the free and open-source software movement,
Chun (2008, p. 303) highlights how “insisting that freedom stems
from free software ... amplifies the power of source code, erasing the
vicissitudes of execution and the structures that ensure the coinci-
dence of code and its execution”. Moreover, Chun (2008, p. 311)
cautions how “we “primitive folk” worship source code as a magical
entity-as a source of causality- when in truth the power lies elsewhere,
most importantly in social and machinic relations”.

Live Coding practices that (at least superficially) organize around
code can be critically examined under Chun’s insights. Chun might
caution against allowing the software employed in Live Coding perfor-
mance to stand-in for the motivations that have evolved around Live
Coding. This sentiment is also reflected in the TOPLAP Manifesto
Draft (TOPLAP 2010) which states that “Live Coding is not about
tools”.

The practice of sharing one’s screen in Live Coding performance
can be dissected to illustrate Chun’s cautions. In Live Coding per-
formances, the projected code is often a central focal point. A literal

interpretation of ‘show us your screens’ could allow a performer to
claim transparency and liveness on the basis that they presented a
flood of text too small for an audience to interpret. Code fetishism
risks equating adherence to the medium of code (and it’s projection)
as Live Coding; as transparent, live, theatrical, cutting-edge, and ex-
perimental.

Conversely, code can also be employed obfuscate and mask hid-
den operations and intentions. High-level abstractions and ‘impure’
functions that have many side-effects may present to an audience as a
single operation (what would Live Coding’s equivalent of lip-syncing
look like?). To this point, Chun (2008, p. 315) adds that “we know
very well that source code is not executable”; source code’s transition
to action contains steps of translation, both social and technical, that
are erased when source code is perceived as immediately executable.

In the TOPLAP manifesto, “show us your screens” is preceded
by “obscurantism is dangerous” (TOPLAP 2010), suggesting that at
least part of the reason code is projected is to provide transparency.
Technocratic obscurantism behind source code that is deceitfully pre-
sented in the name of transparency has the potential to be more ob-
scurant than admitting to “just hitting play” (Parkinson and Bell
2015) on a pre-mixed performance. In sum then, interfaces that glo-
rify or aestheticize the complexity of code may reify the performer’s
‘sourcery’ and the relations of knowledge-power that Live Coding
seems vested in disrupting.

Liveness, Emphemerality and Speed

The venerated qualities of liveness, improvisation, and speed in some
Live Coding performance settings can also be re-examined in light
of critiques of the accelerated temporal qualities of technology. Rosa
(2013) identified a paradox in which accelerations in technological
progress have been accompanied by parallel accelerations in the per-
ceived ‘pace of life’. Information communications technologies that
promised to provide conveniences that would free up one’s time in-
stead impose new temporal demands, manifested in ubiquitous con-

nectivity. Time that is relinquished by modern technologies is often
expected to be redirected towards “displaying competent — which is to
say profitable — subjectivity” (Gregg 2018, p. 188). Rosa (2013) ar-
gues that tendencies towards speed are driven by cultural, economic,
and structural motors.

In response to social acceleration, critical theorists and technolo-
gists have compelled further appreciation for, and exploration of ‘slow-
ness’ and its qualities. Walter Benjamin (1983) offered the icon of the
flineur; an urban roamer who juxtaposes their inherent appreciation
of their activity against their busy industrial backdrop. Compulsions
for slow interaction have also manifested in the philosophy and de-
sign of slow technologies. Strauss and Faud-Luke (2009) advocate for
a form of ‘slow design’ that facilitates reflection, sustainability, and
other qualities beyond utility. Hallnds (2015) similarly articulates
slow technologies as artefacts of expression that reveal their profun-
dity through use, rather than the functional role they fulfill. Odom
et. al (2012), Odom (2015), and Grosse-Hering et. al (2013) have
employed principles of slow design in the creation of new technologies
that counterbalance the perceived accelerations brought by ubiquitous
media. Taken together, these works identify a potentially harmful so-
cial (or market) preference trending towards efficiency and speed, and
propose designed slowness as one response.

In alignment with these slow philosophies, “Slow Coding” (Hall
2007) has been suggested as a practice of Live Coding that celebrates
a “non-competitive, meditative, conversational ethos” rather than vir-
tuosity and danger. However, compulsions towards ‘liveness’ in Live
Coding often favour speed and ephemerality (for instance, in the con-
text of an Algorave performance). Improvisation without the aid of
graphical abstractions requires the performer to be mentally and phys-
ically dexterous so not to subject an audience to stagnant aesthetic
results. Code is generated and subsequently vanishes as quickly as
the duration of a half-hour Algorave set, providing little opportunity
to experiment with longer compositional forms. Indeed, Slow Coding
seems to juxtapose other articulations of Live Coding that emphasize
efficiency and speed in such performance situations. For instance,

Mclean and Wiggins (2010a, p.8) suggest one goal of bricolage and
interactive programming to “provide a more efficient creative feedback
loop”. Similarly, the TidalCycles live coding language has aligned its
development towards “terse syntax [that] allows for faster expression
of ideas, and therefore a tighter programmer feedback loop more suit-
able for creative tasks” (McLean and Wiggins 2010b, p.2, emphasis
added).

Chun’s problematization of the conception of immediate program
execution suggests that the prospect of ‘live’ program execution may
erase other steps that are necessary for translating code into exe-
cutable binary (or perceived action more broadly) and thereby serve
to reify source code as the essence of new media. A Live Coding
performance may be reduced to the performer’s code as it is created
‘live’, negligent of hours of rehearsal, prior software development, pre-
programming, community building, and other factors that produce
such spectacles.

‘Fast’ blank-slate Live Coding practices that celebrate the
ephemerality of code may also subject the performer to a form of
precarity familiar to the contemporary ‘gig economy’. In blank-slate
performances, the performer often discards all written code at the
end. Like the gigger’s employment, code is impermanent, undepend-
able, and prone to termination. Parkinson and Bell (2015) illustrate a
connection between the ‘liveness’ of a performance and the audience’s
perception of the performer’s labor. They note that performances
are seen as more ‘live’ when it appears that the performer exerts sig-
nificant labor. Thus to classify as ‘live’ and improvisational, Live
Coder’s may be asked to exert greater labor while also accepting that
the results of their efforts (or at least their code) will soon vanish.
Parallels can be observed with how ‘gigs’ demand significant labor
while failing to provide persistent economic security. In both situa-
tions, compulsions towards speed (in code or employment turnover)
enable precarious labor conditions. An appreciation for ‘slow’ qual-
ities, graphical abstractions, and pre-written code has informed the
design of the Dead ClJing software presented here, reflecting an at-
tempt to balance liveness and emphemerality with persistence and

security.

Code and Liveness in Code Jockeying

Code Jockeying (CJing) (Collins and McLean 2014; Purvis et. al
2019) is an approach to Live Coding in which the performer is primar-
ily concerned with transitioning between pre-written code snippets,
rather than generating new ones live. Liveness and improvisation in
ClJing practice focus on discovering new combinations of code snippets
and orchestrating their timely execution. CJing can be seen as a dif-
ferent flavor of Live Coding than the blank-slate approach discussed,
with its own different expressions of ‘code’ and ‘liveness’.

Purvis et. al (2019) identified usability limitations of text-based
code interfaces for CJing, proposing a suite of gesture-based abstrac-
tions (sliders, knobs, MIDI controller inputs) to supplement text-
based code in their Visor Live Coding environment. Salazar’s (2017)
tablet-based Auraglyph software has similarly been motivated by a
desire to find gesture in Live Coding, beyond text-based interfaces.

Such motivations to replace or augment text-based interface with
continuous controls and gesture-based interactions suggest a desire
to transcend a particular manifestation of code fetishism that only
recognizes text-based code. When source code is understood not to
be ‘executable’ (as Chun advocates), abstractions such as sliders and
MIDI controllers no longer appear to be impurities of otherwise pure
and transparent source code; source code is impure from the start
and gestural widgets (impurely) continue without claiming higher-
order transparency. The emerging practices and software surrounding
ClJing thus continue to question what counts as ‘code’, at what point
CJing software becomes the same DJ/VJ software that earlier Live
Coding literature began to deviate from in the first place, and whether
or not it is even desirable to erect such distinctions between code and
not-code. The Dead CJing software continues this discussion.

Purvis et. al (2019, p.2) also note the “the difficulty of reusing
and sharing content in audiovisual tools” (emphasis added) as a
motivation informing the development of the Visor ClJing environ-

ment. By deliberately encouraging the preparation and reuse of code,
CJing seems to deviate from the form of improvisation, liveness, and
ephemerality discussed earlier. Code written for CJing must have per-
sistence beyond a single performance (unlike blank-slate live coding)
to enable the performer to explore new forms of improvisation. How-
ever, reliance on previously-written code could enable performance
practices similar to the ‘we all hit play’ philosophy of deadmaub, in
which the performer merely hits play on a pre-recorded set. Parkin-
son and Bell (2015, p.1) articulate how deadmaub’s “notion of perfor-
mance as spectacle” deviates from Live Coding’s orientation towards
free improvisation.

Provided these perspectives, CJing appears to either challenge or
extend earlier mandates of Live Coding in their conceptions of both
liveness and code. The following section introduces the Dead CJing
software and its motivations to either redefine or deviate from liveness
and code.

DeadCode

Dead is a browser-based, language-agnostic, and tablet-friendly envi-
ronment for audio-visual live coding and Code Jockeying (see Figure
). Dead provides an interface for authoring code snippets that can
be toggled on and off on a grid of buttons (called ‘stems’). The in-
terface contains sliders and other control inputs to facilitate smooth
transitioning between stems and ‘tracks’ (columns of stems). Cur-
rently Dead supports the TidalCycles (McLean and Wiggins 2010b)
and Hydra (Jack, n.d.) live coding languages, with the capability to
include renderers for other languages in future versions.

Motivations

Dead was conceived as the improbable combination of the TidalCycles
(McLean and Wiggins 2010b) live coding language, and the Ableton
Live DAW. Dead draws inspiration from Ableton’s ‘scene launcher’
interface which enables the user to create a performance workflow

while composing in the DAW, while underlying sound and visuals are
generated by TidalCycles and Hydra respectively. Earlier it was dis-
cussed how Live Coding has been articulated as a practice separate
from conventional Ableton Live performances and similar forms of
computer-mediated audio-visual expression. However, perhaps one of
Ableton Live’s most attractive features is its balance of static com-
position and live performance. Artists using Live can pre-craft well-
produced sound layers (a less ‘live’ practice) and then use Live’s scene
launcher interface to perform with them live. To support ClJing, Dead
aims to strike a similar balance by supporting both static composition
and improvised exploration and editing of pre-composed stems.

In response to the earlier discussion on liveness and the ephemeral
precariousness of blank-slate live coding, a core design goal of Dead
was to facilitate the persistence and reuse of pre-written code. For
the author, it was frustrating not to have an organized method for
reusing or remixing code snippets produced from successful impro-
visation sessions. Dead seeks to address this issue by providing an
interface that can support both persistence and improvisational ex-
ploration. For instance, a common workflow that has been established
by using Dead includes starting with an improvisation using one of
Stem code editors, producing a desired aesthetic result, and then sep-
arating the code into multiple stems (e.g. a different stem for bass,
drums, and visuals). After several iterations, the Dead Launch Space
will contain a library of Stems that facilitate improvised exploration
of new permutations and modifications of layers. The interface places
no restrictions on how many stems can be added, permitting Dead
compositions to grow arbitrarily large. To support this persistence,
it was important early in development to implement basic operations
for saving and loading state, as well as moving and managing stems
(e.g. with copy and paste commands). The state of a Dead composi-
tion can be saved to the browser storage with the keyboard shortcut
‘CTRL+s’ and loaded from browser storage with ‘CTRL+1", or saved
to a JSON file with ‘CTRL+d’ and opened with ‘CTRL+0’.

A second goal of the interface was to provide gestural abstractions
from the code to allow easier continuous control of parameters and in-

New Track New Track New Track New Track New Track New Track New Track New Track New Track New Track

New Trac master

Effects

Boot Script

Live

dF"

19 (]* gain 1.09) $ c(5,()=>{return
tack [Math.sin(time/1000)*0.01+4},()=>
return
(I* gain 0.86) $ ime%4}).pixelate(30,9).kaleid(()=>
stack [retumn time%20}).rotate(x=>{return
fast2 $ (0.5 Math.sin(time)}).repeat(2).rotate(()=>|
~>)$ return time*0.1}).kaleid(90).out()
sometimes
(off 0.1 (J+

nnta "7"N\ &

Figure 1: DeadCode interface

stantaneous toggling of code execution. In this regard, Dead has been
motivated by several previous Live Coding environments that have
supported gestural abstractions, including Visor (Purvis et. al 2019),
Auraglyph (Salazar 2017), and Estuary (Ogborn et. al 2017). Con-
tinuous controls can be challenging to type in text-based live coding
environments, usually requiring the performer to repeatedly delete,
modify, and re-run small changes to parameters. Such discretized
motions can often only be performed one-at-a-time by a single per-
former. To transition between records, Disc Jockeys typically need to
modulate several parameters at once (for instance filtering out bass
frequencies from the out-going track while increasing the bass of an
incoming track). To enable the performer to execute multiple actions
at once, Dead has been designed for tablets. The performer can si-
multaneously apply a filter, turn off a code stem, and introduce a new
stem with a multi-touch gesture.

Dead’s primary design goals towards persistence and graphical in-
terfaces could be seen as deviations from both ‘liveness’ and ‘code’. A
discussion of whether Dead violates any necessary conditions of Live
Coding follows after a complete overview of the software.

Design and Features

The majority of the Dead interface is composed of the ‘Launch Space’;
columns of ‘stems’ represented by buttons that can be started and
stopped by clicking or tapping a stem button. When a stem button is
clicked, the code underlying that stem is executed, and when a stem is
turned off, its code is stopped. Vertical sliders are fixed to the bottom
of each stem column for controlling the volume of all stems in that
column.

Right-clicking (or long-pressing on tablets) on a stem button opens
it in the ‘Stem Editor’ panel on the right of the interface (see Figure
). In the Stem Editor, the user can write code that will be executed
when that stem is turned on. If the stem is already toggled on, code
that is evaluated in the Stem editor (by clicking ‘Eval’, or toggling
the code editor to be ‘Live’) evaluates the code immediately, enabling

the user to improvise during a CJing performance. The Stem Editor
also contains horizontal sliders for other effects suited to a continu-
ous range, and code toggles for quickly applying and removing effects
to the stem. A ‘Master’ menu also persists in the Stem Editor, for
setting the tempo, applying global effects, and defining code macros
that are executed before rendering stems.

master rev clap

Name:

TidalCycles v

0

d1$ (]* gain 1.09) $ osc(5,()=>{return @
stack [Math sin(time/1000)*0.01+4},()=>|

{return

time%4}).pixelate(30,9) kaleid(()=|
{return time%20}).rotate(x=>{retul
(I* gain 1.36) (|* Math.sin(time)}).repeat(2).rotate((|
gain 1.36) $ s {return time*0.1}).kaleid(90).out()
"kick:5*2"

(I* gain 0.68) $
stack [

" chit2N0RNARK

Figure 2: DeadCode Stem Editor panel (bordered in red)

The final component in the bottom right corner of the Dead in-
terface includes the ‘Render View’ (see Figure [3]). The Render View
contains a projection of the active code (ie. the combination of all
stems that are turned on) and any rendering visuals. A copy of the

New Track

New Track

New Track

New Track New Track Ney master <untitled>

Name:

Live

22000

. AT
1$ (]* gain 1.09) sc(E
stack [Eliy]

a!

time?

stack [retur
fast2$ (0.5 retul

| ->)$ Math
. sometimes { _retull

' (I* gain 0.86) $
0

d1 % (]* gain 1.09) $ stack |

(|* gain 0.86) $ stack [
fast2$ (05~>)%
sometimes (off 0.1 (|+
note "7™)) $ note "<0/2
7/2 11/2 16/2 19/2 23/2
19/2>" # s "mallet” #
sustain "1" |+ note "-12"
orbit "1" # room "0.1"
size "0.2

gain 1.03) $ stack [

(I* gain 0.73) .

(# Ipf 1891) (|* gain 0.73)
$ (# Ipf 1891) $ stut 4
0.1 0.86 $ s "[synth:3/8]"

(I* gain 0.71) (|* gain
0.71) $ superimpose (#
pan (range 0.25 0.75
rand)) $stut6051% s
"birds/8" # sustain "1" #
n (irand 8) # orbit "1" #
begin (range 0 0.3 rand)
speed "0.5"

stut80.5075 %
whenmod 4 1 (const
silence) $ s "sine*3 ~" #
sustain "1" #

osc(5,()=>{return Math.sin(time/1000)*0.01+4},()=>{return
time%A4}).pixelate(30,9) kaleid(()=>{retumn time%20})_rotate(x=>
{return Math_sin(time)}).repeat(2).rotate(()=>{return
time*0.1}).kaleid(90).add(osc(3,0.1,0.9).rotate(()=>{return
time%>5}).kaleid(()=>{return time%50}).scale(()=>{return
Math.sin(time*0.125)"3},0.5,0.5).rotate(()=>{return
time%35}).kaleid(4).add(noise(3,2).color({}=>{return
Math.sin(time)},()=>{return

Math.sin(time/3)},0.5,0.2) kaleid(4).modulate(osc(1,

Figure 3: DeadCode Render View visible in a popped-out window (right) and below the Stem Editor

Render View can be popped out into another full-screen window to
display to an audience.

Rendering and Language Neutrality

Dead has been designed to be language-agnostic, employing a similar
architecture to the Extramuros (Ogborn et. al 2015) collaborative live
coding environment. While the current version supports only Tidal-
Cycles and Hydra, the render engine can be easily updated to support
more languages. For rendering TidalCycles, each stem is appended to
a ‘stack’ expression, with any applied effects prepended. For instance,
the following pseudo-code may be generated by a Dead composition
that has two active stems, and a global ‘gain’ effect applied:

dli $ (l* gain 0.9) $ stack [

(I* 1pf “‘900°’) $ s “‘bd cp’’, --stem 1 with a low
pass filter effect
s “‘“ hh ~ hh’’ -- stem 2

The TidalCycles code generated by Dead is passed via WebSockets
to a client NodeJS application which pipes it to a Haskell interpreter,
employing a method introduced by Extramuros (Ogborn et. al 2015).
This approach is extensible to Live Coding languages that cannot be
directly evaluated in the browser.

Hydra stems are similarly combined into a single Hydra expres-
sion, by ‘adding’ the output of different stems. For instance, two
stems containing different Hydra oscillator generators (bolded) would
be combined as follows:

0sc(1,0.5,0.95).add(osc(4,0.5,0.3) .rotate(0.6)).out ()

Future iterations of the software will add different options for how
Hydra stems are combined (eg. Hydra’s ‘blend’, ‘diff’, ‘modulate’, or

‘mult’ operators could be used in place of ‘add’).

Modes of Liveness

Tanimoto (1990) has described the various levels of liveness of pro-
gramming languages, ranging from relatively static languages that
require compilation before execution, to languages that execute as
soon as code is written. Live coding languages are often interpreted
to support more immediate execution than is possible with compiled
languages. Ogborn et. al (2017) provide an overview of some differ-
ent approaches to liveness employed by Live Coding environments.
They note that structure editors such as those offered by Estuary
and patcher languages (such as Max/MSP and PureData) can offer
immediate execution since they prohibit syntactically invalid expres-
sions that may otherwise occur (eg. in text-based editors) while tran-
sitioning from one state of the code to the desired expression. The
LiveCodeLab Live Coding environment (Della Cassa and John 2014)
proposes an alternative method to achieve immediate execution in a
text-based editor, in which code is interpreted immediately, but syn-
tactically invalid expressions are not executed.

Dead offers four distinct levels of liveness. All changes made to
sliders in Dead are immediately executed (they are L4 live in Tani-
moto’s (1990) terminology). Code editors in Dead offer two levels of
liveness (see Figure. When the ‘live’ toggle is switched off, the user
must either click ‘Eval’ or hit ‘SHIFT+enter’ on their keyboard for
code to be evaluated. When the ‘live’ toggle is on, code is evaluated af-
ter a configurable amount of time (one second by default) has elapsed
since the last keypress. This ‘debounced liveness’ (termed after the
common JavaScript ‘debounce’ utility for delaying events) provides
an alternative method for achieving near-live execution of text-based
live coding languages while avoiding show-stopping crashes that could
occur if the code was executed on each keypress. The performer is
permitted to ‘finish their thought’ before execution occurs, and can
choose to delay execution by ‘stammering’ (continuously typing and
deleting a character).

TidalCycles v

Live

(I+ up "<O
sometimesBy 0

<down>" "c'min7")
"bass" # n "50 51
legato 1 # orbit 1
0.9 # room 0.3

Figure 4: DeadCode code editor with language selection and
liveness toggle

From one perspective, Dead’s support for the persistence and reuse
of code can be interpreted as a fourth level of liveness. Code that is
pre-written rather than being authored live (termed here as ‘dead-
code’) has endured a longer process of translation from source code
to executable before it is ultimately rendered in front of an audience.
The performer’s preparatory labor in composing the code, arranging
it into navigable labeled ‘stems’, and other production tweaks can be
considered a process of compilation, while execution occurs when that
code is invoked in performance. This interpretation of the liveness of
deadcode acknowledges the labor involved in such tasks of compila-

tion as a requisite component of CJing performances while maintain-
ing a distinction between such practices and more live blank-slate
approaches. Furthermore, framing deadcoding (the act of creating
pre-written code for later performance) as compilation, and perfor-
mance as execution appropriately recognizes the ‘live’ aspect of CJing
as the timely rendering of code in arrangement with other interacting
elements.

Multiple Projections for ‘Showing Us Your Screen’

In Live Coding performances, the aesthetic of the code is often enough
to provide the audience with both ‘access to the performer’s mind’ and
something interesting to view, while the interface provides a more
functional role. In earlier versions of Dead, it was unclear how the
performer would ‘show their screen’ when their screen was primarily
occupied by a functional interface that conceals most of the underly-
ing code. To address this issue, the ‘Render View’ was added to the
bottom right corner of the Dead interface. The Render View contains
the code of all active stems overlain on top of the currently rendered
Hydra visuals. For performances, new instances of the Render View
can be cloned to new windows to present multiple full-screen views
to the audience, while the performer can still view the visual output
of their performance in the bottom right corner of the performance
interface. This approach was motivated by Estuary’s (Ogborn et. al
2017) similar capabilities to provide multiple different projections of
the same code to suit different viewers and users. The audience is
provided a projection that aligns with the aesthetics of a live cod-
ing performance, while the performer can control audio-visual results
with a more functional projection. Dead’s Render View was also in-
formed by VJing software which conventionally allocates a portion of
the interface for viewing the video material displayed to the audience.

Architecture and Implementation

Dead was written in JavaScript using the ReactJS/Redux frontend li-
braries. Live Coding languages used in Dead that cannot be rendered
directly in the browser (currently only TidalCycles) are sent over a
WebSocket connection to a NodeJS server run locally on the per-
former’s machine and then are piped to the appropriate interpreter.
The Dead performance interface communicates with all instances of
the Render View via browser post messages. Dead uses the browser’s
local storage to save state, or users can download a JSON file of their
Dead composition and load it back into the browser. Figure[5|provides
an overview of the Dead architecture.

Is it Live? Is it Code?

The primary design goals of Dead were to deviate from both live-
ness and code in preference of a more gesture-based and persistent
interface suited to CJing. Therefore, it seems reasonable to question
whether the resulting design still qualifies as Live Coding.

The pre-programming encouraged by Dead seems to contrast with
Live Coding’s celebration of improvisation and uncertainty. In this
way, Dead may deviate from McLean and Wiggins’ (2010a) formu-
lation of Live Coding as a ‘bricoloage’ feedback loop between the
performer and their machine. Deadcode is generally predictable to
the performer. However, the CJing practice supported by Dead fa-
cilitates another feedback loop between the performer and the au-
dience that requires another form of improvisation. Similar to DJs
and VJs, CJs are tasked with reading their audience to appropriately
curate new material to play. Furthermore, unlike most DJ software,
the Dead performance interface affords the live alteration of the un-
derlying sound-generation algorithms, and live composition of new
stems. Thus while Dead perhaps sacrifices liveness by encouraging
pre-programming, it also offers new expressions of liveness consistent
with DJ improvisation.

The TOPLAP manifesto’s call to ‘show us your screens’ is also

challenged or stretched by Dead. Dead’s Render View offers a pro-
jection of the code behind currently executed stems to achieve an
aesthetic and practice aligned with the common Live Coding tradi-
tion of projecting code for the audience. However, as has been dis-
cussed, part of the reason Live Coding artists project their code is
to provide transparency with regards to what the performer is doing
on their computer (ie. not ‘just hitting play’ and checking emails).
A nefarious Render View could easily provide the illusion of liveness,
improvisation, and significant labor, while the performer merely hits
play on a pre-recorded set. In many respects, such a misleading pro-
jection is not so different from the form of ‘we all hit play’ liveness
practiced by deadmau5. As Parkinson and Bell (2015) note, in such
performance situations, liveness resides in the spectacle of the perfor-
mance (the ‘Render View’), rather than improvisation. While Dead
does not support such views by default, it is noted that projections
could enable the form of obscurantism that Live Coding has sought
to avoid.

Dead can be used to perform entirely with buttons and sliders,
requiring no manipulation of the code underlying each stem. It can
be questioned then, whether Dead qualifies as ‘coding’ to contribute
to a continuing discussion in the Live Coding community as to what
qualifies as code, and whether or not drawing such distinctions is de-
sired. Beyond just text-based programming languages, the Live Cod-
ing community has recognized visual (Max/MSP, PureData), tactile
(Cocker 2015), embodied (Baalman 2015), and esoteric representa-
tions of code (to name only a few). Defining an exclusive set of ex-
pressions of algorithms to qualify as code, therefore, seems capricious,
and any definition of ‘Live Coding’ based on such criteria would be
fragile. The earlier discussion of misleading projections of code (for
instance in a nefarious Render View) demonstrates how any algo-
rithmic process can trivially be translated into text instructions that
satisfy a normative representation of ‘code’. Therefore, this paper
affirms in concert with Chun (2008), that the essence of Live Coding
should not be located in a transfixed representation of code. Stated
differently, this paper argues that the ‘code’ in Live Coding should be

Mative Machine

Web Browser

Mative Interpreter Ext I
-’ y xterna
(eg. TidalCycles) (o Render View
W_ DeadCode Performance | Messages
Model)S Relay j‘ L niorkace
Mative Interpreter External
(eq. TidalCycles) - Render View
*_ —h.

Storage
Saving

Figure 5: System overview

permitted to breathe into new representations. Whether or not the
specific representation presented by Dead qualifies under this broader
interpretation is open to scrutiny.

Future Work and TODOs

While this paper has focused primarily on the ‘liveness’ and ‘code’
aspects in investigating how ClJing and the Dead environment fit
within Live Coding, clearly there are other aspects of Live Coding
that could have been examined. This paper could have also explored
how open source software, networked performance, language neutral-
ity, collaboration, community organization, experimentation, Algo-
rave, and other characteristics of Live Coding are (or are not) repre-

sented in Dead’s design and use. Such factors could be the subject of
future research and suggest several agenda items for the continuing
development of the Dead software.

Future development efforts will focus on providing renderers for
more Live Coding languages, including but not limited to SuperCol-
lider (McCartney 2002), Gibber (Roberts and Kuchera-Morin 2012),
The Force (Lawson n.d.), and Punctual (Ogborn n.d.). Another pri-
ority development item will be to support networked collaboration
using Dead. One approach could employ a NodeJS WebSocket server
application to share state to connected clients (similar to the Ex-
tramuros’ (Ogborn et. al 2015) server architecture). A secondary
objective in supporting networked collaboration may include the cre-
ation of a more substantial back end system for sharing Dead stems

and compositions (for instance as is supported by Gibber (Roberts
and Kuchera-Morin 2012)). Since Dead will sometimes execute na-
tive code on the user’s machine (eg. as is done with TidalCycles code
that is piped to a GHC interpreter) a stem publishing system would
require significant security oversight. Lastly, future work will employ
the emerging Web MIDI API to offer support for MIDI inputs for
controlling Dead. Since Dead’s layout resembles Ableton Live, MIDI
mappings will be created for Ableton hardware controllers.

Links

e Demonstration video: https://youtu.be/nTBwdGbfgmU

e Source Code Repository: https://github.com/JamieBeverley/
DeadCode

Acknowledgments

I would like to thank the anonymous reviewers who provided very
valuable suggestions for strengthening this work.

References

Baalman, M. (2015) ‘Embodiment of code’, In Proceedings of the First
International Conference on Live Coding (pp. 35-40). Leeds, UK: IC-
SRiM, University of Leeds. http://doi.org/10.5281/zenodo.18748

Benjamin, W., (1983) Charles Baudelaire: A Lyric Poet in the
Era of High Capitalism. 1969. Trans. Harry Zohn. London: Verso,
199.

Blackwell, A.F. and Collins, N. (2005) ‘The Programming Lan-
guage as a Musical Instrument’, In Proceedings of the Psychology of
Programming Interest Group 17th Annual Workshop (p. 11).

Cocker, E. (2015) ‘Live Coding / Weaving -- Penelopean Métis and
the Weaver-Coder’s Kairos’, In Proceedings of the First International
Conference on Live Coding (pp. 110-116). Leeds, UK: ICSRiM, Uni-
versity of Leeds. http://doi.org/10.5281/zenodo.19342,

Collins, N. and McLean, A. (2014) ‘Algorave: Live performance
of algorithmic electronic dance music’, In Proceedings of the Inter-
national Conference on New Interfaces for Musical Expression (pp.
355-358).

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. (2003) ‘Live
coding in laptop performance’, Organised Sound, 8(3), pp.321-330.

Chun, W.H.K. (2008) ‘On sourcery, or code as fetish’. Configura-
tions, 16(3), pp.299-324.

Della Casa, D. and John, G. (2014) ‘LiveCodeLab 2.0 and Its
Language Livecodelang’, In Proceedings of the 2nd Acm Sigplan In-
ternational Workshop on Functional Art, Music, Modeling & Design
(Farm ’14’), 1-8. ACM, doi:10.1145/2633638.2633650.

Gregg, M., (2018) Counterproductive: Time management in the
knowledge economy. Duke University Press.

Grosse-Hering, B., Mason, J., Aliakseyeu, D., Bakker, C. and
Desmet, P. (2013) “Slow design for meaningful interactions”, In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 3431-3440). ACM.

Hall, T. (2007) ‘Towards a Slow Code Manifesto’, Published on-
line; http://www.ludions.com/slowcode/.

Hallnés, L. (2015), ‘On the Philosophy of Slow Technology’, Acta
Universitatis Sapientiae-Social Analysis, 5(1).

Jack, O. (n.d.), ‘Hydra’, computer software, available online;
https://github.com/ojack/hydral

https://youtu.be/nTBwdGbfgmU
https://github.com/JamieBeverley/DeadCode
https://github.com/JamieBeverley/DeadCode
http://doi.org/10.5281/zenodo.18748
http://doi.org/10.5281/zenodo.19342
http://www.ludions.com/slowcode/
https://github.com/ojack/hydra

Lawson, S. (n.d.), The Force, computer software, available online;
https://github.com/shawnlawson/The Force|

Magnusson, T. (2014), ‘Improvising with the threnoscope: inte-
grating code, hardware, GUI, network, and graphic scores’. In Pro-
ceedings of the Internation Conference on New Interfaces for Musical
Expression. Goldsmiths University of London.

McCartney, J. (2002), ‘Rethinking the computer music language:
SuperCollider’, Computer Music Journal, 26(4), pp.61-68.

McLean, A. and Wiggins, G.A. (2010), ‘Bricolage Programming
in the Creative Arts’, In 22nd Psychology of Programming Interest
Group (p. 18).

McLean, A. and Wiggins, G. (2010), ‘Tidal-pattern language for
the live coding of music’, In Proceedings of the 7th sound and music
computing conference.

Odom, W, (2015), ‘Understanding long-term interactions with a
slow technology: an investigation of experiences with FutureMe’, In
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (pp. 575-584). ACM.

Odom, W., Selby, M., Sellen, A., Kirk, D., Banks, R. and Regan,
T. (2012), ‘Photobox: on the design of a slow technology’, In Proceed-

ings of the Designing Interactive Systems Conference (pp. 665-668).
ACM.

Ogborn, D.; (n.d.), Punctual, computer software, available online;
https://github.com/dktr0/Punctuall

Ogborn, D., Beverley, J., del Angel, L.N., Tsabary, E. and
McLean, A. (2017), ‘Estuary: Browser-based Collaborative Projec-
tional Live Coding of Musical Patterns’, In International Conference
on Live Coding 2017.

Ogborn, D., Tsabary, E., Jarvis, 1., Cardenas, A. and McLean,
A. (2015), ‘Extramuros: making music in a browser-based, language-
neutral collaborative live coding environment’, In Proceedings of the

First International Conference on Live Coding, University of Leeds,
ICSRIiM (p. 300).

Parkinson, A., and Bell, R. (2015), ‘Deadmaub, Derek Bailey, and
the Laptop Instrument -- Improvisation, Composition, and Liveness
in Live Coding’, In Proceedings of the First International

Conference on Live Coding (pp. 170-178), Leeds, UK: ICSRiM,
University of Leeds. http://doi.org/10.5281/zenodo.19350.

Purvis, J., Anslow, C. and Noble, J. (2019), ‘CJing Practice: Com-
bining Live Coding and Vjing’, In Proceedings of the International
Conference on Live Coding 2019.

Roberts, C. and Kuchera-Morin, J. (2012), ‘Gibber: Live coding
audio in the browser’, In Proceedings of the International Computer
Music Conference (ICMC 2012).

Roberts, C. and Wakefield, G., 2016. Live Coding the Digital Au-
dio Workstation. In Proceedings of the 2nd International Conference
on Live Coding.

Rohrhuber, J., de Campo, A., Wieser, R., Van Kampen, J.K., Ho,
E. and Holzl, H. (2007), ‘Purloined letters and distributed persons’,
In Music in the Global Village Conference.

Rosa, H. (2013), Social acceleration: A new theory of modernity.
Columbia University Press.

Salazar, S. (2017), ‘Searching for gesture and embodiment in live
coding’, In Proceedings of the International Conference on Live Cod-
ing.

https://github.com/shawnlawson/The_Force
https://github.com/dktr0/Punctual
http://doi.org/10.5281/zenodo.19350

Strauss, C. F., and Fuad-Luke, A. (2009), ‘The slow design princi-
ples’; available online; www.slowlab.net /CtC_SlowDesignPrinciples.pdf.

Tanimoto, S.L. (1990), ‘VIVA: A visual language for image pro-
cessing’, Journal of Visual Languages & Computing, 1(2), pp.127-139.

TOPLAP. (2010), ‘ManifestoDraft’, available online; https://
toplap.org/wiki/ManifestoDraft/.

Wang, G., Cook, P.R. and Salazar, S. (2015), ‘Chuck: A strongly
timed computer music language’, Computer Music Journal, 39(4),
pp-10-29.

http://www.slowlab.net/CtC_SlowDesignPrinciples.pdf
https://toplap.org/wiki/ManifestoDraft/
https://toplap.org/wiki/ManifestoDraft/

Live Coding Procedural
Textures of Implicit Surfaces

Charles Roberts

Department of Computer Science
Worcester Polytechnic Institute
charlie@charlie-roberts.com

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

We describe a system for live coding procedural textures on implicit
surfaces, and how its implementation led to foundational changes in
the end-user API for the live coding environment marching.js. The
texturing additions to marching.js enable users to use predefined tex-
ture presets, to live code their own procedural textures, or to use other
systems for fragment shader authoring, such as Hydra, to generate
textures. It also affords using the browser’s 2D canvas API to define
textures, providing an entry point for performers who might be famil-
iar with web APIs but unfamiliar with lower-level GPU languages like
GLSL. We describe how demoscene culture led us to initially adopt
design decisions that were inappropriate for our particular system,
and the changes to both our underlying engine and end-user inter-
face that resulted from reconsidering these decisions in the context of
procedural texturing.

Introduction

We previously developed a library, marching.js, that exposes a ray
marching engine for live coding performance. This system enables
programmers to describe 3D scenes in JavaScript, which are then com-
piled into fullscreen GLSL fragment shaders. In our initial writings on
the library (Roberts 2019) we described how the scenes generated by
the system often felt “... ‘technical’, ‘clinical’, or perhaps even ‘cold’.”
While post-processing filters were mentioned as one possible solution
for this problem, the research presented here instead investigates a
variety of techniques to enable procedural texturing of the implicit
surfaces (Hart 1993) rendered by marching.js.

In somewhat of a surprise, the implementation of these features led
to fundamental API changes in our system and rethinking culturally
derived assumptions about how the rendering engine for our system
should function. We will describe some of the background that led
to these assumptions, and how the implementation of procedural tex-
turing for implicit surfaces led to both a terser end-user programming

mailto:charlie@charlie-roberts.com

marching.js playground X +

@ charlieroberts.github.io/marching/playground/ v NP _3 :

Material(‘'phong', Vec3(.0),Vec3(.5),Vec3(1), 32, Vec3(90,.25,1)) help julia fractal ,

Texture(‘'cellular', { strength:.15, scale:20 })

b = Bump(

j = Julia(1.5)
.material(matl)
.texture(tex),

tex,

-.05

)
)
. light(
Light(Vec3(5,5,8), Vec3(1), .0125)
)
.fog(1, Vec3(0))
.render()fl
.camera(0,0,1.75)

Figure 1: The quaternion Julia set, textured and bump-mapped with cellular noise, as rendered by marching.js

interface and low-level engine optimizations. We then outline various
levels of interface for our texturing system, and our attempts to en-
sure the idealized “low threshold, high ceiling, wide walls” (Resnick
et al. 2005) design space that help characterize successful creativity
support tools. We conclude with technical and aesthetic directions
for future research.

Background

In this section we begin by briefly describing ray marching as a ren-
dering technique. We then discuss how the demoscene (Carlson 2009)
affected many of our design decisions when initially authoring march-
ing.js, and contextualize the use of procedural texturing in marching.js
within the broader community of live coders.

Ray Marching

Ray marching is a method of rendering (primarily) three-dimensional
scenes. It is perhaps best understood in contrast to a much more
common 3D graphics pipeline, which incorporates tessellation and
rasterization. In this process, geometries are subdivided into trian-
gles (tessellation). The vertices for these triangles are then sent to the
GPU, where the triangles are reassembled and projected from their
3D location to the 2D viewing plane (rasterization).

In contrast, ray marching is a physically-informed rendering tech-
nique that enables programmers to use mathematical formulae to de-
fine and combine geometries, without having to worry about tessella-
tion or rasterization. In ray marching, a ray is projected from a virtual
camera through each pixel in the output and into a three-dimensional
scene; if this ray strikes an object in the 3D scene the pixel that
the ray travels through is assigned the color of that particular ob-
ject. This rendering technique makes a variety of operations that are
complex to perform with tessellated triangles much simpler, such as
fluidly morphing from one shape to another, or infinitely repeating a
geometry throughout a space. However, tessellation and rasterization

are extremely efficient, while ray marching typically requires a fairly
powerful graphics card to perform realtime rendering on high resolu-
tion displays. We describe ray marching in greater detail in our prior
writings about marching.js (Roberts 2019).

Cultural Assumptions in Marching.js

Many popular introductory tutorials on ray marching are presented
in the context of the demoscene, a culture that emphasizes the pro-
duction of audiovisual sketches (termed *demos*) that explore the
boundaries of what is possible within technical constraints. These
constraints can include the adoption of a particular low-resource tech-
nology platform, artificial constraints on the number of bytes a pro-
gram can occupy in memory, or, in the case of many live demoscene
competitions, the challenges of creating complex three-dimensional
worlds in realtime in a competitive head-to-head “battle” setting. The
demoscene features a variety of online venues for promoting discussion
and dissemination of the idiomatic techniques used within it. These
include the labyrinthine pouet.net—a popular forum for discussing
techniques ranging from shader programming to analog techniques in-
volving overhead projectors and paper cutouts—and shadertoy.com,
a site for viewing, editing, and sharing demos realized in the browser
using GLSL (Graphics Language Shader Language), one of the most
widely used languages for authoring programs that are parallelized to
run on the graphics programming unit (GPU) of a computer. The first
version of marching.js was heavily influenced by the cultural focus of
the demoscene on GLSL demos and the ready availability of related
references and tutorials. This led to questionable design decisions
that we re-examined in the context of procedural texturing.

Live Coding of Texture

Our research is particularly interested in the application of texture to
three-dimensional geometries; however, we note there is also a broader
discussion of texture within the live coding community as it relates

to both musical pattern and computational craft (McLean 2013).

Additionally, there is an established practice of live coding
fullscreen fragment shaders in the live coding community; these
shaders can be thought of as textures for simple rectangles that fill
the entire projection. Popular environments for GLSL live coding of
this type include The Force (Lawson & Smith 2017), KodeLife (Fis-
cher n.d.), and Veda (Amagi n.d.), while the demoscene community
typically uses a standardized system named Bonzomatic (Szelei n.d.)
for live competitions. Other visual live coding systems, such as La
Habra (Hennigh-Palermo n.d.) and Visor (Purvis, Anslow & Noble
2019) primarily use 2D programming APITs, such as Processing (Reas
& Fry 2006) in the case of Visor or a ClojureScript environment for
programming Scalable Vector Graphics in the case of La Habra.

The live coding system Hydra (Jack n.d.) adopts a different ap-
proach, providing an end-user JavaScript API that wraps a code gen-
eration engine for writing GLSL shaders. Hydra is “..a modular
and distributed video synthesizer” (ibid.), and similar to most ana-
log video synthesis systems the output can typically be considered
two-dimensional.

Our research on using textures within marching.js builds off of
many of the ideas found in these other systems, enabling live coders
to define textures that are created using the built-in HTML jcan-
vas;, element, and to use Hydra as a texture for the implicit surfaces
marching.js provides.

Rethinking the Live Coding Interface for March-
ing.js

As we implemented procedural texturing for the first time in march-
ing.js, we faced a difficult problem.

The code in Listing [I} creates a box that is rotated on its x-axis
and scaled before rendering. When we first tried to map textures to
such geometries, the effect became that of a textured blanket layered
over the top of the geometry: the box would rotate underneath and
scale appropriately, but the “blanket” would just hang in place while

barely moving, instead of being wrapped tightly around it so that as
the geometry rotated, the texture did as well. More succinctly: our
geometry rotated but our texture did not.

march (
Rotate (
Scale(Box(), .5)
Vec3(1,0,0),
Math.PI / 3
)

) .render ()

Listing 1: A scaled and rotated box in marching.js

This problem is more complex when we look at aggregate objects
that contain transformations applied to individual members of the
aggregate as well as the aggregate itself. For example, consider code
in Listing [

march (
Rotate (
Union (
Rotate(Box(), Vec3(0,1,0), Math.PI/3),
Sphere(1.25)
),
Vec3 (1), Math.PI/5
)

) .render ()

Listing 2: A rotated box and a sphere combined via a Union
combinator which is then also rotated

In Listing [2] we apply a rotation to our box, and then apply a ro-
tation to the union of the rotated box and the sphere. If we textured
the resulting aggregate geometry, we would need to take both of these
rotations into account at different parts of the texturing process.

The code generation engine in marching.js is effectively divided
into two stages. In the first, we determine whether or not rays travel-
ing through a pixel on our screen hit an object in the scene; if so, we
need to color that pixel based on the material / texture of the object,
and on the lighting of the scene. The second lighting stage calculates
this color, however, in marching.js version 1 the lighting stage cannot
access the transforms of the geometry that is being lit. We had to
significantly refactor the code generation engine in order provide ac-
cess to these transformations, which in turn led to questioning some
of our underlying assumptions about how our engine should function.
These changes enable users to freely assign transformations at any
level of hierarchy, as shown in Figure [2]

Transform Everything

The first change we made was to assign matrix-encoded transforms
for rotation, translation, and scale to every operation in marching.js.
Explicitly wrapping individual functions in such transforms was no
longer necessary, and a transformation matrix is automatically ap-
plied to all geometries.

Listing 3: Comparing old and new syntaxes for rotating a box in
marching.js captionpos

Listing 4: Comparing syntaxes for applying a variety of transforma-
tions to a box in marching.js captionpos

//old syntax to rotate,translate,and apply material
march (
Rotate (
Box(null, Vec3(1,0,0), Material(’glue’)),
Vec3(1,0,0),
.5
)

) .render ()

//new syntax to rotate,translate,and apply material
march (
Box ()
.rotate(Math.PI / 3, 1,0,0)
.translate(1,0,0)
.material(’glue’)
) .render ()

// old syntax
march(Rotate(Box(), Vec3(1,0,0), Math.PI/2))
.render ()

// new syntax
march(Box () .rotate(45, 1,0,0)).render ()

One effect of our changes is that the API for applying transforma-
tions immediately became much terser; in our opinion its clarity is also
improved. Listing [4] shows a more complex example for comparison:

The new syntax is more explicit about what is occurring, making
it easier to read, while only being two characters greater in length
in Listing [It also helps to avoid deep nesting which can difficult
to parse and awkward to augment with additional code. Given that
scaling, movement, and rotation are typically important parts of per-
forming with 3D geometries, we feel that improving the application
of such transformations is significant.

A tradeoff to these benefits is consistency. In first release of
marching.js, nested functions were used to create geometries, trans-
form them, and apply domain operations that could radically alter a
scene; in the newest version, transforms, texturing, and application
of material are instead achieved by method calls. We experimented
with also applying domain operations using method calls, however,
we found the resulting syntax to be ambiguous and difficult to apply
consistently. In its new form, the programming interface is currently
non-homogenous in how various operations are applied, but we still

P, :
march (:
rpt = Repeat(N
5 union = Union2(“ <
cyl = Cylinder(Vec2(1, 3

. texture('dots', {scale:2}),

cyl2 = Cylinder(Vec2 N
.rotate(90,0;0,1) A ¢
.texture('stripes',{scale:1})y; ‘{

cyl3 = Cylinder(Vec2(.95,1.5))ig
.rotate(90,1,0,0) _x Afds 9a.?)

- .texture('checkers', {scate: });,‘_' _

| AT R e T
.rotate(45,1,) B e
.scale(

. o ;
\ -
N
-

)i & > K B\ ,;
.background(Vec3()) Y

. fog(, Vec3(: y
.rendgr()'

' 4

Figure 2: Three cylinders with different rotations, scaled and repeated, with coherent procedural textures.

believe it is clearer than our prior solution.

Improving Efficiency and Code (Generation

As discussed previously, the implementation for marching.js was cre-
ated using online references and code examples. The majority of these
references were authored by demoscene participants, who commonly
perform all graphics processing on the GPU. This is an aesthetic
choice that places all graphics code in a (typically) single file using
a single language (GLSL), making it easier for viewers and program-
mers to understand. However, some operations, such as the transfor-
mations described in this section, are in fact more efficient to perform
on the CPU.

The reason for this is the parallel nature of GPUs, which makes it
difficult to share information across various invocations of the main
fragment shader function. Since this main function is invoked once
per pixel being rendered, GPU based transformations are thus calcu-
lated thousands of times per frame, and then must be repeated on
every additional frame. For some transformations, like translation,
this is not a significant cost, however, for others such as rotation it is
an expense best avoided.

Now that every operation in marching.js has a transformation ma-
trix associated with it, we can calculate this matrix a single time on
the CPU, transfer the matrix to the GPU, and then use the same
data for rendering every pixel in the operation. The transform doesn’t
need to be recalculated unless the it is changed in some fashion (for
example, increasing rotation), meaning in some cases we only need to
calculate the transformation a single time. This is clearly a win over
having to recalculate it for every pixel on every frame, regardless of
whether any changes to the transformation have occurred. Such op-
timizations are perhaps obvious in hindsight, but were only achieved
by reconsidering the context of the demoscene tutorials, references,
and libraries that influenced marching.js.

Changing Code Generation

In the generated shaders, each operation references a matrix that
represents the operation’s cumulative transformation. This includes
transformations applied directly to the operation, transformations ap-
plied to any domain operations that wrap the operation, and transfor-
mations that might be applied to any higher-level geometry that the
operation is a part of. As these various transformations are applied
(usually via matrix multiplication, with the code generation engine
ensuring correct application order by explicitly writing it into the
generated shader), the code generation engine stores each step of the
transformation as needed so that it can be referenced during textur-
ing.

Textures

marching.js enables users to approach texturing in a variety of differ-
ent ways, providing texturing options for beginning programmers as
well as more advanced programmers who are fluent in GLSL. In order
of increasing complexity, these techniques include:

1. Predefined 2D GLSL textures that can be wrapped around ob-
jects

2. Predefined 3D GLSL textures
3. Using a standard image file (.png, .gif, .jpg etc.)
4. Using the 2D <canvas> API provided by the browser

5. Using Hydra and other systems that output to <canvas> ele-
ments

6. Writing custom GLSL textures

Predefined Textures

The predefined textures included with marching.js (shown in Fig
are accessible via presets that can referenced by name, as shown in

Listing

march (
Box () .texture(’dots’)
) .render ()

Listing 5: Using a texture preset in marching.js

Texture objects can also be defined and used in multiple geome-
tries. Additionally when a call to .texture() is used on a geometric
combinator (Union, Intersection, Difference etc.) the texture is ap-
plied to all surfaces belonging to the combinator; this also applies to
domain operations like Repetition. Listing [6] provides code examples
of both methods.

// define a texture used by multiple objects
tex = Texture(’truchet’)
march (
Box () .texture(tex),
Sphere(1.35).texture(tex)
) .render ()

// or use a combinator to apply texture
march (
Difference (
Box (),
Sphere(1.25)
) .texture(’truchet’)
) .render ()

Listing 6: Applying one texture across multiple geometries via reusing
a texture and applying a texture to a combinator

Using the HTML <canvas> Element as a Texture

Many beginning web and graphics programmers experiment with the
HTML 2D <canvas> API. By offering <canvas> as one of the options
for texturing in marching.js, we enable these programmers to eas-
ily experiment with texturing without having to learn GLSL. These
textures can be animated and updated in the onframe method that
marching.js uses for animation.

Integrating with Hydra

Hydra is a popular live coding system that operates on a similar
principle to marching.js: users provide a high-level description in
JavaScript of a representation which is then compiled to a GLSL
shader for display. In Hydra, the operations are typically derived from
analog video synthesis techniques, while in marching.js the operations
relate to volumetric rendering and constructive solid geometry.

Performers use Hydra to create 2D patterns that change over time,
making it a perfect candidate to use as texture generator for march-
ing.js. Fig[]shows Hydra being used to texture a Mandelbox fractal.
The Hydra graph can be edited and redefined at any time to update
the applied shader texture. We imagine future collaborative perfor-
mances where one user could program textures in Hydra while another
programmed 3D scenes that used the generated textures.

GLSL Textures

Fragment shaders for texturing can also be authored directly inside
of marching.js, via the same API that is used internally to define the
various texture presets included in marching.js. This API enables
end-users to define points for interacting with their texture as well as
the raw GLSL code that is needed to calculate an output color value.

tex

tex.
tex.
tex.
tex.

= Texture(*canvas') help L ¢

.fillStyle = 'red’
.fillRect(0,0,150,150)
.fillStyle = 'white'
.fillRect(150,0,150,150)

ctx
ctx
ctx
ctx

march (

Box ()
.texture(tex)
.rotate(45, 1,0,1)
). render()

Figure 3: Using a HTML <canvas> element to texture a surface.

hydra = new Hydra({ canvas })

hydra.shape(8, .5, @.5)
.color(1,2,1) ./
hue(()=> (time / 4))
out() (~ '

a= Texture('Eénvas', { canvas })
o iw ~
march(A e S IRT 4
b = Mandelbox().texture(a)
) :

-

.fog(.85, Vec3(@))
.render(5, true)
.camera(0,0,3)
onframe = t => { ¥
b.fold = 1 + sin(t) * .
b.rotate(t x5, 0,1,1) #&
a.update() [7 o

¥ =7 s

.

camera.pos.z = 10/

Figure 4: Hydra in use to texture a Mandelbox fractal.

%

introduction

def = { LMl defining procedural textures v *

name: "dots2',

parameters: [
{ name:'scale', type:'float', default:5 },
{ name:'color', type:'vec3', default:[1,1,1
1,

glsl:® y
vec3 dots2(vec3 pos, vec3 nor, float count, vec3 color) {
vec3 tex = vec3(

color — smoothstep('
0.85,
0.22,
length(fract(pos*(round(count/2.)+.5)) -.5)
)-
}

H
return tex;

Texture.create(def)

march(s = Sphere(2).texture('dots2'))
.fog(.15, Vec3(0))
.render(5, true)

Figure 5: Defining and using a texture written in GLSL.

Manipulating Textures

After applying a texture the properties of the generated texture are
added as members of the texture function itself, exposing them for re-
altime control. In Listing [7] the time property of a 4D simplex noise
texture is changed in each frame of generated video.

march (
plane = Plane().texture(’noise’)
) .render ()

onframe = function(time) {
plane.texture.time = time

}

Listing 7: Changing texture properties over time

While most texture properties vary according to the preset used,
every texture has a scale property that is used as a scalar to modify
the texturing coordinates internally to the shader. Most also have a
‘strength’ property that determines the effect of the texture in deter-
mining the final color of each pixel.

Conclusions and Future Work

We extended a system/library, marching.js, to include a variety of
methods for texturing implicit surfaces. This required rethinking
fundamental aspects of how its code generation and ray marching
engines functioned, but resulted in a terser, more readable end-user
API that should lead to more fluid live coding performances. The
texturing methods we implemented help to ensure that program-
mers of varying experience will be able to experiment with textur-
ing, while providing integration with the live coding system Hydra
ensures that its users can transfer prior knowledge while experi-
menting or performing with volumetric rendering techniques. The

updates to this system are open source and available online at
https://charlieroberts.github.io/marching/playground/.

There are improvements to be made in the sampling algorithms
for 2D textures and anti-aliasing more generally in marching.js. Addi-
tionally, integration with p5.js, a JavaScript port of Processing (Mc-
Carthy, Reas & Fry 2015), could open texturing in marching.js to the
many artists and students who actively use that platform. Conversely,
we are also considering porting the library to run in p5.js, so that the
Processing community will have a relatively easy platform to explore
volumetric rendering.

References

Amgai, T. (n.d.) VEDA-VJ app for Atom. [Online] Available at:
https://veda.gl/. Accessed on Wed, September 25, 2019.

Carlsson, A. (2009), The forgotten pioneers of creative hacking
and social networking-introducing the demoscene, Re: Live: Media
Art Histories 2009 Conference Proceedings. pp. 16—20.

Hennigh-Palermo, S. (n.d.) La Habra: The Shape of Things
to DOM. [Online] Available at: https://github.com/sarahgp/la-
habra . Accessed on Mon, December 16, 2019.

Hart, J. C. (1993), Ray tracing implicit surfaces. In: Siggraph
93 Course Notes: Design, Visualization and Animation of Implicit
Surfaces pp. 1-16.

Fischer, R. (n.d.) KodeLife. [Online] Available at: https:
//hexler.net/products/kodelife . Accessed on Wed, September
25, 2019

Jack, O. (n.d.) hydra. [Online] Available at: https://hydra-
editor.glitch.me. Accessed on Mon, December 16, 2019.

https://veda.gl/
https://github.com/sarahgp/la-habra
https://github.com/sarahgp/la-habra
https://hexler.net/products/kodelife
https://hexler.net/products/kodelife
https://hydra-editor.glitch.me
https://hydra-editor.glitch.me

Lawson, S. & Smith, R. R. (2017), The Dark Side. In: Centro
Mexicano para la Musica y las Arts Sonoras (Mexico): Proceedings
of the Third International Conference on Live Coding.

McCarthy, L., Reas, C. & Fry, B. (2015) Getting Started with P5.
js: Making Interactive Graphics in JavaScript and Processing. Maker
Media, Inc.

McLean, A. (2013) The textural x. In: Proceedings of xCoAx2013:
Computation Communication Aesthetics and X. pp.81-88.

Purvis, J., Anslow, C. & Noble, J. (2019) CJing Practice: Combin-
ing Live Coding and Vjing. In: Proceedings of the 2019 International
Conference on Live Coding.

Reas, C. & Fry, B. (2006) Processing: programming for the media
arts. Al & SOCIETY, 20(4), 526-538.

Resnick, M., Myers, B., K., N.; Shneiderman, B., Pausch, R.,
Selker, T. & Eisenberg, M. (2005) Design Principles for Tools to Sup-
port Creative Thinking. Technical report.

Roberts, C. (2019) Live Coding Ray Marchers with Marching.js.
In: Proceedings of the 2019 International Conference on Live Coding.

Szelei, G. (n.d.) Bonzomatic: Tool for the Live Coding Compo de-
buted at Revision 2014. [online] Available at: https://github.com/
Gargaj/Bonzomatic. Accessed on Monday, December 16, 2019.

https://github.com/Gargaj/Bonzomatic
https://github.com/Gargaj/Bonzomatic

POSTERS

97 Ndef(\g1).clear(l);
32 Ndef(\g1).clear(109);
93 Ndef(\ahpep)ect€ar(df);
Néef (\sweep) ;.ra—(:n')‘é " r.var, { LANotsel.kr
Nde 1).set(r, Ndef(\gdur.var, { L atr
A8 y o::‘:qp‘.d.l‘\o‘“.m. Ngpons | Nee
. \gamp, 0.3, \co, 12009, \gpan, N

environment for
live code performance

"m OB N TR ORGR AN et ryamanss
(c) 2020 Robin Parmar

RIPPLE: integrated audio
visualization for livecoding
based on code analysis and
machine learning

Hiroki Matsui *
¢3119019aa@edu.teu.ac.jp

Keiko Ochi*
ochikk@stf.teu.ac.jp

Yasunari Obuchi*
obuchiysnr@stf.teu.ac.jp

*Tokyo University of Technology

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Introduction

TidalCycles >
* OSC signal openFrameworks
St Calllein Machine Learning Module
Audio signal
ﬁ High-level Parameter
\ / > (OSC signal)

Figure 1: RIPPLE overview

We have created an integrated audio-visual performance system
called RIPPLE for livecoding. In this system, in addition to the OSC
signal generated by the LC environment, high-level music information
calculated by real-time audio analysis by machine learning is used for
visualization. The system enables real-time generation of music and
visuals by single coder.

RIPPLE

The coder plays TidalCycles. The ML module analyzes the generated
audio to derive high level information. Finally, the machine learning

mailto:g3119019aa@edu.teu.ac.jp
mailto:ochikk@stf.teu.ac.jp
mailto:obuchiysnr@stf.teu.ac.jp

output and Tidal-OSC are visualized with openFrameworks.

Machine Learning

Label Category Label 1 (#slices) Label 2 (# slices)

Brightness Bright (643) Dark (240)

Rhythmic Order Orderly (771) Disorderly (112)

Sound Organicity Organic (372) Mechanical (511)

Harmonicity Pitched (617) Noisy (266)

Note Density Sparse (413) Dense (470)

Table 13.1: Labeling results
High level information is calculated in the following flow.
e Record performance audio data in real time

e Extract acoustic features(e.g. energy, spectrum) with openS-
MILE from segments divided into 5 seconds.

e Estimate the label value from the extracted features using
SMOreg with reference to the constructed model.

In our model construction example, Matsui’s Tidal performance
audio data (20 tracks) were used, and each was divided into 10 seconds
to make a total of 884 segments (147 minutes). Next, 5 types of binary
labels were assigned to each segment, and a model was constructed
with SMOreg. Table shows the labeling results.

Visualization

Figure[2] shows examples of visualization. Tidal OSC signals and ma-
chine learning output are mapped to the polygonal rotational move-
ment as shown in Table High-level information extracted every
few seconds is reflected in the elements that determine the overall vi-
sual, such as color tone and object placement, and Tidal-OSC brings
synchronization between music rhythm and video rhythm.

Discussion

Our future works are:

e Model building takes time and effort, so methods and flows need
to be improved.

e In addition to the oF that needs to be implemented, it would be
useful to be able to link with existing visual environments and

Visual Coder.

e The live machine learning flow is invisible, so we want to show
it on the screen.

Source Parameter Role in Visualiza-
tion

Sound Trigger Animation Trigger

Effect Value Size of Object

TidalCycles

Code length Number of object
vertics and screen

divisions

Brightness Alpha value for
screen fill

Rhythmic order Align objects

Machine Learning Organicity Hue and line weight

Harmonicity Saturation of color

Note density Number of Objects

Table 13.2: Sound parameters and their roles in visualization

Figure 2: Results of Visualize

References

Cooper, M., Foote, J., Pampalk, E., Tzanetakis, G. (2006). 'Visual-
ization in audio-based music information retrieval’, Computer Music
Journal, 30(2), 42-62.

Florian, E., Martin, W., and Bjorn, S. (2010) ’Opensmile: the
munich versatile and fast open-source audio feature extractor’, Pro-
ceedings of the 18th ACM international conference on Multimedia,
1459-1462.]

Mark, H., Eibe, F., Geoffrey, H., Bernhard, P., Peter, R., and
Ian, H'W. (2009) 'The weka data mining software: an update’;, ACM
SIGKDD explorations newsletter, 11(1), 10-18.

Street, Z., Albornoz, A., Bell, R., John, G., Jack, O., Knotts,
S.,McLean, A., Smith, N.C., Tadokoro, A., van der Walt, J.S., Ve-
lasco, G. R. (2019) "Towards Improving Collaboration Between Visu-
alists and Musicians at Algoraves’, International Conference on Live
Coding.

Filling In: Livecoding
musical, physical 3D printing
tool paths using space filling
curves

Evan Raskob
Goldsmiths, University of London
e.raskob@gold.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This paper explores how space-filling curves such as Hilbert Curves
can be used for live, improvisational making in livecoding perfor-
mances because of the predictable ways in which they fill up space
without crossing over themselves. It explores current research into
2D space filling algorithms known as infills and how these relate to
live, improvisational making. A livecoding system for 3D printers
called LivePrinter is introduced and used to demonstrate different as-
pects of live performance with printers. These examples suggest some
practical methods for working with Hilbert curves in a performance
setting based, along with avenues for further research into livecoding
performances using space-filling curves.

3D Printing as Performance

Livecoding can be a means for directing the physical movements of
machines, such as robots and 3D printers. This change in media from
sound and screen to machine presents some unique challenges. For
3D printing, one of the biggest challenges is how to improvise when
making new forms out of extruded lines of plastic, without acciden-
tally destroying those forms in the process. This means moving the
printing tool head safely and without hitting previously constructed
structures.

3D printing: a type of type of Computer Numerical Controlled
(CNC) (i.e. digital) manufacturing technology called Additive Manu-
facturing (AM). More specifically, it is called Fused Deposition Mod-
eling (FDM) or sometimes Fused Filament Deposition (FFD). FDM
(as we will refer to it):

1. Is extrusion-based: physical objects built up by depositing lay-
ers of molten plastic material

2. Uses a motor to force a thin plastic filament through a hot ex-
truder, melting it in the process (Turner 2014). Molten plastic
sticks and bonds to previous layers, forming a solid

mailto:e.raskob@gold.ac.uk

3. Is simple and safe enough process to be utilised and further
adapted by maker spaces, universities and small businesses
worldwide (Gao et. Al 2015)

4. Utilises a digitally-controlled print head or hot end encapsulat-
ing the extruder, moving in 3D space inside the printer cavity

5. Often requires 4 separate motors: Two motors position the print
head relative to the print bed in x and y directions where x is
side-to-side, y is front to back; one motor moves the print sur-
face or print bed in the z direction, up and down. Another
motor (e) feeds the plastic filament through the print head, also
pulling it back at times to prevent unwanted material leakage
in a process referred to as retraction.

As these motors spin, they vibrate and make sound. People have
used 3D printers to make music, notably the Imperial March from
Star Wars and, less notably, Nickelback (3D Print 2014). A library
for the Python language is even available to convert MIDI note num-
bers to motor frequencies (Westcott, 2015). The sounds of the mo-
tors are relatively quiet but can be captured and then amplified using
contact microphones and audio amplifiers. In a 3D printing livecod-
ing performance, the performer choreographs the movements of the
printer (speed, direction, duration) and the properties of the printer
itself (temperature, fan speed, filament flow rate) by manipulating
and writing code. Both the act of making, with its resulting physical
forms, and the sounds of making are intrinsic to the performance.
This leads to a dual mode of composition when making music for
printers, where one can prioritise the aesthetics of the form by com-
posing movements in millimetres or the aesthetics of the sound by
composing in milliseconds of movement at specific speeds (e.g. musi-
cal notes).

Table 14.1: Typical speed scale for axis values for the motors used
in the Ultimaker 2 printers, from Westcott’s MIDI-TO-CNC library
(Westcott 2015). Note that no values were given for the filament
feeding (e-axis) motor.

The 4 digitally-controlled motors: they are the same model of mo-
tor and have identical properties. When the motors spin, they emit
sound that can be mapped to notes in the equal temperament scale
used by MIDI synthesizers using the following ES6-like pseudocode:

// calculate the frequency of the note from
// MIDI note number:

frequency = Math.pow(2.0, (note - 69) / 12.0)
frequency = frequency * 440.0

// convert to motor speed in millimetres

// per second for GCode (see Table 1)

speed = frequency / speed_scale_for_axis; (1)

Knowing the travel speed of each motor that will produces a de-
sired musical note, along with the desired duration of that note, one
can calculate the distance of travel across each axis by using a simple
movement equation:

d = st (2)

X axis Y axis 7 axis

47.069852 47.069852 160.0

where d is the distance in mm to be calculated, s is a scalar repre-
senting the speed of the print head in mm/s in the current direction
of travel, and t is the desired movement time in seconds.

In LivePrinter, this is simplified into two functions, one called
m2s(NOTE) to translate a MIDI note NOTE to motor speed for an
axis, the other called t2d(TIME) to use that speed and a desired du-
ration of movement TIME to calculate distance. The following ES6

code uses these two functions to move the print head making a pitch
of MIDI note C5 with a duration of 1 second (1000ms):

await 1p.m2s(72).t2d(1000) .go(); (3)

Normally, the speed at which the printer prints is determined by
the desired quality of the print balanced by the total time of manu-
facture. Slower printing times generally lead to higher quality prints
because the print head can follow a more precise path and the layers
have time to cool properly before the next layer is applied on top (3D
Matter 2015). When making music with printers, the relationship
between form and making time is subverted. Performance time and
musical quality can have as much weight as the quality of the finished
object, whatever that final output might be in such a live setting.
Slower speeds that might produce higher quality prints may be ei-
ther inaudible or in the wrong key or frequency for the piece being
performed.

This leads a maker/performer to reframe manufacturing as a
mainly durational activity. Instead of describing objects in the usual
way using technical drawings or digital models specifying physical
dimensions in millimeters, one can consider objects using their dura-
tional dimensions and specify them in terms of the speed, angle and
duration of movement used to manufacture them.

This tightly integrates the making of the object with the descrip-
tion of the object itself. It stands in opposition to the process plan-
ning approach that separates out a design concept from its fabrication
processes.

Space Filling Curves Using Liveprinter

One solution to the problem of creating continuous, rhythmic move-
ments in live 3D printing is a Hilbert curve:

e Originates with G. Peano (Peano 1890) & David Hilbert
(Hilbert 1891; Sagan 1994).

e Curves map a one-dimensional space to a multi-dimensional
space by passing through each point in that space once and
only once.

e Generates tool paths which do not cross back over themselves

e Has a compelling visual aesthetic and mechanically rhythmic
properties, as shown here from our experience performing with
them

e Tool movements following a Hilbert curve that fill up spaces in
predictable ways

Creating the curve

Curves can be represented as Lindenmeyer Systems (L-systems).
There are ways to directly calculate a mapped point in n-dimensional
space given an initial Hilbert index and a desired resolution.

These are less useful for describing tool paths because the infor-
mation about how to move from point to point, i.e. the rotations
and directions of movements encoded into an L-System string, are
lost and must be re-calculated. The fact that an L-System encodes
a literal set of movement instructions for a 3D printer, without need
for matrix multiplications or any other form of interpolation, makes
it attractive as a means for generating forms.

The LivePrinter example (Raskob 2019) uses a starting axiom of
L and replacement rules of:

L: +RF-LFL-FR+ (4)

R: -LF+RFR+FL- (5)

Finally, symbols are iterated in order and mapped to drawing func-
tions written in ECMAScript 6 (ES6):

Figure 1: Three iterations of the Hilbert curve printed on a 3D printer. On the left is one iteration, on the far right is two iterations and on

the middle right is 3 iterations. The code for generating these can be found in the LivePrinter repository https://github.com/pixelpusher/|
liveprinter/blob/master/liveprinter/static/examples/hilbert.js

https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/hilbert.js
https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/hilbert.js

’F’: async () => { await 1lp.m2s(MIDI_NOTE) .t2d(
DURATION) .go (1, false);
return 1; %}

(6)
’+7: async () => { 1lp.turn(-90); return 0; } (7
’-2: async () => { lp.turn(90); return O0; } (8)

With LivePrinter, drawing a triangle with sides of 100mm could
be achieved with the 3 lines of ES6 code:

await 1lp.turnto(0).dist (100).go(1); (9)
await 1lp.turn(-120).dist (100) .go(1); (10)
await 1p.turn(-120).dist (100) .go(1); (11)

Note that:
e [, and R symbols are ignored

e In (4,5,6), the Ip object is an instance of the LivePrinter API
object that converts drawing instructions to GCode

e In (6) m2s(MIDI_LNOTE) is a function converting a MIDI note
number to a motor speed as described above

e In (6) t2d(DURATION) is a function converting a movement
duration in milliseconds to a movement distance in millime-
ters based on the motor speed as described above go(1, false)
compiles the current drawing instructions to GCode and sends
it to the physical printer, with the argument 1 meaning that
the printer should be extruding during movements and the sec-
ond argument false disabling retraction so the printer will not
pause, retract, and then unretract after each drawing operation.
Ip.turn() is a virtual operation that rotates the current drawing
direction by an amount in degrees, clockwise.

These drawing commands are similar to the transactional, embod-
ied model of Logo’s Turtle Graphics (MIT 2015). A drawing cursor
(in this case, a 3D printer head) is directed to move and “draw” us-
ing short, intuitive statements that describe movement and drawing
operations. A full API can be found in the documentation on the
project websitd'}

Thttps://github.com/pixelpusher/liveprinter

This can be specified more concisely in the LivePrinter minilan-
guage as:

turnto O | dist 100 | go 1 (12)
turn -120 | dist 100 | go 1 (13)
turn -120 | dist 100 | go 1 (14)

Of course, this assumes that the printer is prepared to draw with
the print head having been heated up to the melting temperature of
the plastic filament, the printing speed set, and the head positioned

properly.

Filling Up Space With Plastic

Ordinarily the 3D printing process starts with a digital model created
in a Computer Aided Design (CAD) program that defines the geom-
etry of the object that is to be printed. This geometry mostly defines
the outer and inner surfaces of the object, leaving the process of de-
scribing how the internals are to be manufactured to another piece of
software called the “slicer”.

The slicer determines the layer-by-layer construction of the object
based on the properties of the model of printer to be used in that con-
struction process. The process of starting with a model, optimizing
the geometry, and preparing the machine instructions for manufac-
turing is often referred to as “Process Planning” (Thompson 2007;
Livesu et. al. 2017).

https://github.com/pixelpusher/liveprinter

Figure 2: Two layers of Hilbert curve techno with random notes printed on a 3D printer. The code for generating these can be found in the
LivePrinter repository https://github.com/pixelpusher/liveprinter/blob/master/testing/hilbert_livecoding/hilbert-experiment-—
01.s

https://github.com/pixelpusher/liveprinter/blob/master/testing/hilbert_livecoding/hilbert-experiment-01.js
https://github.com/pixelpusher/liveprinter/blob/master/testing/hilbert_livecoding/hilbert-experiment-01.js

The problem of how to efficiently generate 2D toolpaths that fill
up 3D space in a structurally sound way whilst minimising time, ma-
terial and movement remains an open area of research (Jin et. al.
2004; Jin et. al. 2017; Ding et. al. 2016). Current software packages
offer a variety of filling patterns, from linear stripes to diamonds to
vector patterns. Recent research has also looked at the properties
of the Hilbert curve for filling spaces both rectangular and irregular
(Ding et. al. 2016; Papacharalampopoulos et. al. 2018).

Motorised Hilbert Curves as Techno Perfromance

For 3D printing and music-making, the durations of movements and
silences are of paramount importance to the musical aesthetics of the
piece. As with any movement that creates music, a performer must
control it precisely. Any gaps in movement or extraneous movements
to position the printing head become part of the performance, for
better or worse. A performer needs predictable tool paths at their
disposal to improvise with, much as a jazz musician riffs on different
musical scales and motifs. Continuous curves such as the Hilbert can
be useful in that respect. As Papacharalampopoulos et. al. 2018
observed, Hilbert curves keep the print head moving throughout their
length and thus minimize or altogether remove any extra waiting be-
tween operations and travel times needed to reposition the head after
movements.

With dense Hilbert curves of higher orders, the number of move-
ments can be quite large which is helpful to a livecoding performer
trying to compose a dense melody live. They are especially useful
when the printer movements are quick, giving them more time to
think as they type new lines of code.

For example, a performer might wish to play a sequence of MIDI
C5 notes (MIDI number 72) every beat, at a tempo of 120 beats-
minute (or 0.5 seconds-per-beat) for a 12-beat segment. That means
each beat the print head would be moving at a speed of 11.1165
millimetres-per-second for a distance of 5.5582 millimetres. A second-
order Hilbert curve could completely contain that movement because

the curve is made of 15 segments packed into a space that is 3 seg-
ments by 3 segments square, or 16.6747mm by 16.6747mm which will
take a total of 6 seconds to play (12 notes at a duration of 0.5s per
note). This whole curve fills up a little over 13% of the total printer
bed space at that level, leaving room for about 8 repetitions of that
motif before starting a new print layer.

Some calculations:

1. Printable area on the print bed is 200mm
2. 200mm/32 segments of 4th order Hilbert = 6.25mm per division

3. Gives us 1024 beats at 0.5 sec/beat —, 512 sec —;, 8.533 minutes
of music using the whole printer bed

Also, when the curve is oriented to the x/y axes of the print bed
the tool head will move at right angles when drawing the curve. This
uses only one motor at a time, playing distinct notes rather than
chords. A performer could take advantage of this fact by alternating
motor speeds with every segment of the curve, thus playing arpeggios.
It is also possible to make more complex chords using rotated Hilbert
curves. Rotating 45 degrees with respect to the x/y axes of the bed
engages two motors simultaneously when moving, playing a two note
chord consisting of the same two notes. A movement at any other
angle produces a more complex tone that in practice can be difficult
to control.

Future Challenges

In practice, it can be hard to manage Hilbert curves because the L-
Systems representation of them grows exponentially with each itera-
tion. This makes storing them as strings a non-trivial task, especially
in a live, real-time performance setting.

Stepping through an entire curve in a performance is a danger-
ous task because it encompasses hundreds or even thousands of steps.

Some language-specific techniques are needed, such as using ES6 gen-
erators to write iterative Hilbert functions whose execution is not
continuous (Mozilla 2019).

Additionally, more research is needed into the properties of other
space-filling curves that have a number of segments that divide up
evenly into common musical time signatures, like 4 and 8 beat seg-
ments. There are many other types of space filling curves that could
have beneficial musical properties, including diagonal segments that
represent, chords.

Conclusions

Space filling curves can be a useful tool for live, improvisational phys-
ical making performances because of the ways in which they can
completely fill up physical space with dense, aesthetically pleasing
forms that do not cross over themselves during performance. Further
study is needed to come up with methods for integrating different fill
patterns over time, across unpredictable and improvised forms that
arise during performance. This potentially has applications outside of
sculptural performance, in the realm of industrial 3D printing, where
2D and 3D space filling patterns and techniques are current areas of
research.

Acknowledgments

A special thank you to my PhD advisors, Prof. Mick Grierson and Dr.
Rebecca Fiebrink, for all their support and feedback on this project.

References

Ding, Donghong, Zengxi Pan, Dominic Cuiuri, Huijun Li, and
Stephen van Duin. 2016. ‘Advanced Design for Additive Manu-
facturing: 3D Slicing and 2D Path Planning.” In New Trends in

3D Printing, edited by Igor V Shishkovsky. Rijeka: IntechOpen.
https://doi.org/10.5772/63042

Gao, Wei, Yunbo Zhang, Devarajan Ramanujan, Karthik
Ramani, Yong Chen, Christopher B. Williams, Charlie C. L.
Wang, Yung C. Shin, Song Zhang, and Pablo D. Zavattieri.
2015. “The Status, Challenges, and Future of Additive Manu-
facturing in Engineering.” Computer-Aided Design 69: 65-89.
https://doi.org/https://doi.org/10.1016/j.cad.2015.04.001

Hilbert, D. 1891. Uber die stetige Abbidung einer linie auf ein
Flaechenstueck. Math.Ann. 38, 459-460

Jin, Yuan, Yong He, Jian-Zhong Fu, Wen-Feng Gan, and Zhi-
Wei Lin. 2014. ‘Optimization of Tool-Path Generation for Mate-
rial Extrusion-Based Additive Manufacturing Technology.” Additive
Manufacturing 1-4: 32-47.

Jin, Yuan, Yong He, Guoqiang Fu, Aibing Zhang, and Jianke
Du. 2017. ‘A Non-Retraction Path Planning Approach for
Extrusion-Based Additive Manufacturing.” Robotics and Computer-
Integrated Manufacturing 48:132—44. https://doi.org/https:
/doi.org/10.1016/j.rcim.2017.03.008

Livesu, Marco, Stefano Ellero, Jonas Martinez, Sylvain Lefeb-
vre, and Marco Attene. 2017. “From 3D Models to 3D Prints: An
Overview of the Processing Pipeline.” Computer Graphics Forum 36
(2): 537-64. https://doi.org/10.1111/cgf.13147

Matter, 3D. 2015. |https://my3dmatter.com/what-is-the-
influence-of-color-printing-speed-extrusion-temperature-
and-ageing-on-my-3d-prints/

Matt Westcott. 2015. MIDI-TO-CNC. Retrieved Sept.
3, 2019 from https://github.com/gasman/MIDI-to-CNC/blob/
master/mid2cnc.py

https://doi.org/10.5772/63042
https://doi.org/https:/doi.org/10.1016/j.cad.2015.04.001
https://doi.org/https:/doi.org/10.1016/j.rcim.2017.03.008
https://doi.org/https:/doi.org/10.1016/j.rcim.2017.03.008
https://doi.org/10.1111/cgf.13147
https://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
https://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
https://my3dmatter.com/what-is-the-influence-of-color-printing-speed-extrusion-temperature-and-ageing-on-my-3d-prints/
https://github.com/gasman/MIDI-to-CNC/blob/master/mid2cnc.py
https://github.com/gasman/MIDI-to-CNC/blob/master/mid2cnc.py

Milkert, Heidi. 2014. (Dec. 2014). 3D Printers Play Music
from Mario Bros., Star Wars’ Imperial March & More. Retrieved
Sept. 3, 2019 from https://3dprint.com/29244/3d-printer-
music-songs/

MIT. 2015. ‘Logo History.” https://el.media.mit.edu/logo-
foundation/what_is_logo/history.html}0A

Mozilla. 2019. ‘Iterators and Generators.’ https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Iterators_and_Generators

Papacharalampopoulos, Alexios, Harry Bikas, and Panagio-
tis Stavropoulos. 2018. “Path Planning for the Infill of
3D Printed Parts Utilizing Hilbert Curves.” Procedia Manu-
facturing 21: 757-64https://doi.org/https:/doi.org/10.1016/
j.promfg.2018.02.181

Peano, G.: Sur une courbe qui remplit toute une aire plane. Math.
Ann. 36, 157-160 (1890)

Raskob, Evan. 2019. LivePrinter; Livecoding for 3D printers.
(Sept. 2019). Retrieved Sept. 3, 2019 from https://github.com/
pixelpusher/liveprinter

Sagan H. 1994. Hilbert’s Space-Filling Curve. In: Space-Filling
Curves. Universitext. Springer, New York, NY

Sorensen, Andrew, Ben Swift, and Alistair Riddell. 2014. “The
Many Meanings of Live Coding.” Comput. Music J. 38 (1): 65-76.
https://doi.org/10.1162/COMJ_a_00230

Thompson, Rob. 2007. Manufacturing Processes for Design Pro-
fessionals. London: Thames & Hudson.

Turner, Brian N., Robert Strong, and Scott A. Gold. 2014. ‘A Re-
view of Melt Extrusion Additive Manufacturing Processes: 1. Process

Design and Modeling.” Rapid Prototyping Journal 20 (3): 192-204.
https://doi.org/10.1108/RPJ-01-2013-0012

Zhao, Haisen, Fanglin Gu, Qi-Xing Huang, Jorge Garcia, Yong
Chen, Changhe Tu, Bedrich Benes, Hao Zhang, Daniel Cohen-Or,
and Baoquan Chen. 2016. ‘Connected Fermat Spirals for Lay-
ered Fabrication.” ACM Trans. Graph. 35 (4): 100:1-100:10.
https://doi.org/10.1145/2897824.2925958

https://3dprint.com/29244/3d-printer-music-songs/
https://3dprint.com/29244/3d-printer-music-songs/
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html%0A
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html%0A
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://doi.org/https:/doi.org/10.1016/j.promfg.2018.02.181
https://doi.org/https:/doi.org/10.1016/j.promfg.2018.02.181
https://github.com/pixelpusher/liveprinter
https://github.com/pixelpusher/liveprinter
https://doi.org/10.1162/COMJ_a_00230
https://doi.org/10.1108/RPJ-01-2013-0012
https://doi.org/10.1145/2897824.2925958

Creative Context: Sitar, Live Coding, VSTs
e Khyal Geometries: Shama Rahman (sitar), Nick Rothwell (soft-

Functional Live Coding vs. ware and processing)
D A.WS an d VS TS e Non-linear environment, combining live coding with commercial

VSTs and a matrix mixer

e VSTs address audio-processing tasks without re-inventing the
wheel

Dr. Nick Rothwell
Ravensbourne University London
n.rothwell@rave.ac.uk

e VST control via code seems like a fertile area of creative explo-
ration

Tools: Max, VSTs, Node.js, ClojureScript

route show w1n seq now master -

%
y =
\ P ¥
e o=
$F o TF.Sfrecord- @nchans 2
‘ "

seq maln
0]

.

MEASURE +

Figure 2
e Max as VST host and audio mixer

e Embedded Node.js acting as a parameter controller for VSTs

Licensed under a Creative Commons Attribution 4.0 International License and mixer
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland e ClojureScript live-coded via NREPL from Emacs

mailto:n.rothwell@rave.ac.uk

e No direct interaction with Max patchers or instruments—just Issues: Resetting and Recalling Devices
on-screen for visual monitoring

go

do (<! (ctrl/reset-device

Inspiration: Overtone, Gibberwocky < {(px/sequest-pavans

do

<! (px/xmit-some-params-now

tracks[0].midinote.seq([64,65].rnd(), [1/8,1/16].rnd(1/16,2), 1)

tracks[1].note.seq([-14,-12,-9,-8]1, 1/8)

tracks[2].chord.seq(Rndi(0,8,3), 2)
Figure 4

tracks[1].devices[0] ['Filter Freq'](mul(beats(2), e Conceptual clash between immutable data of Clojure and ed-
itable state of virtual instruments and effects

Figure 3 e Edits can be tracked, but are not always reversible—cannot em-
ulate immutability

e Step sequencing from generative pattern expressions e Complete resets to known states (initial, preset)-discontinuous
(sudden audio changes), so need to track levels of signal paths
(when it is safe to recall a state?)

e Table/map lookup for device parameters S o)
e Future directions: more sophisticated state tracking needed

e Gibberwocky’s visual feedback (spark-lines etc.) replaced by References
Max’s graphical interface

Grosse, Darwin (2019). Node For Max Intro — Let’s Get Started!
e Choice of Clojure for immutable data structures: ability to re- January 2019. Available at https://cycling74.com/articles/
verse changes or jump between cues, useful for improvisation node-for-max-intro-%E2%,80%93-1et%E2%80%99s-get-started
and rehearsal (accessed [2019-09-22 Sun]).

https://cycling74.com/articles/node-for-max-intro-%E2%80%93-let%E2%80%99s-get-started
https://cycling74.com/articles/node-for-max-intro-%E2%80%93-let%E2%80%99s-get-started

FARM (2019). ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design, Berlin, 18-23 Au-
gust. Available at https://icfpl19.sigplan.org/home/farm-2019
(accessed [2019-09-22 Sun]).

Roberts and Wakefield (2016). Live Coding the Digital Audio
Workstation. International Conference on Live Coding, Hamilton,
Canada.

McGranaghan (2012) Mark McGranaghan. ClojureScript: Func-
tional Programming for JavaScript Platforms. 2012 IEEE Internet
Computing 15(6):97 - 102.

Hauman (2015) Developing ClojureScript with Figwheel. Clo-
jure/West, Portland, Oregon, April 20-22 2015.

Brannigan, Erin (2007) Music Makes the Moves. RealTime issue
76, Dec 2006-Jan 2007. Available at http://www.realtimearts.net/
article/76/8266 (accessed [2019-09-22 Sun]).

Hickey, Rich (2016). Clojure core.async. Strange Loop, November
2013.

Hoare, C.A.R. (1978). Communicating Sequential Processes.
Communications of the ACM 21/8, August 1978.

Redux: A predictable state container for JavaScript apps. Avail-
able at https://redux.js.org/| (accessed [2019-09-22 Sun).

Transient Data Structures. Available at https://clojure.org/
reference/transients| (accessed [2019-09-22 Sun]).

https://icfp19.sigplan.org/home/farm-2019
http://www.realtimearts.net/article/76/8266
http://www.realtimearts.net/article/76/8266
https://redux.js.org/
https://clojure.org/reference/transients
https://clojure.org/reference/transients

Visor in Practice: Live
Performance and Evaluation

Jack Purvis
Victoria University of Wellington, New Zealand
jack.purvis@ecs.vuw.ac.nz

Craig Anslow
Victoria University of Wellington, New Zealand
craig@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington, New Zealand
kjx@Qecs.vuw.ac.nz

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Visor is a new environment for live visual performance that was de-
veloped to demonstrate code jockey practice (CJing), a new hybrid
performance practice that combines live coding and VJing to harness
the strengths of both practices. CJing draws on live coding for the
ability to improvise content at a low level by coding in textual inter-
faces. VJing is drawn on for its ability to manipulate content at a
high level by interacting with GUIs and hardware controllers. Com-
bining these aspects of both practices enables flexible performances
where content can be controlled at both low and high levels. We
build on previous work by reflecting on the use of Visor in live perfor-
mances and evaluating feedback gathered from creative coders, live
coders, and VJs who experimented with the environment. We con-
clude by discussing Visor’s effectiveness and whether ClJing effectively
combines live coding and VJing along with areas for future work.

Introduction

The creation of visuals to accompany music is an essential part of any
audiovisual experience. Live coding and VJing (video jockey prac-
tice) are live performance practices that offer the ability to improvise
and manipulate visuals that synchronize with music in real-time. Live
coding makes use of live programming techniques, enabling code to
be executed at runtime with immediate feedback (Tanimoto 2013).
Live coding is used to explore how algorithms can generate music
or visuals and is typically performed live at events called Algoraves
(Collins et al. 2003). Video jockeys (VJs) are live visual artists that
mix content in real-time, often complimenting music played by disc
jockeys (DJs) to create audiovisual marriages that engage the senses
(Faulkner and D-fuse 2006). VJs typically perform by layering multi-
ple video clips together, applying video effects, and interacting with
effect parameters using hardware devices such as MIDI controllers.
Live coding focuses on writing code to improvise or manipulate
content. This focus provides fine-grained, low level control of visuals,

mailto:jack.purvis@ecs.vuw.ac.nz
mailto:craig@ecs.vuw.ac.nz
mailto:kjx@ecs.vuw.ac.nz

but does not provide high level control, impairing usability as all in-
teractions must occur through a textual interface. VJs instead focus
on interacting with comprehensive graphical user interfaces (GUIs)
and hardware controllers to improvise or manipulate content. This
focus provides overarching, high level control of visuals, but does not
provide low level control, preventing improvisation of content from
scratch or the ability to make fine-grained adjustments to existing con-
tent. The CJing practice was introduced to overcome the limitations
of live coding and VJing by combining the practices together (Purvis
et al. 2019). In Cling, a performer known as a code jockey (CJ)
interacts with code, GUIs, and hardware controllers to improvise or
manipulate visual content in real-time. CJing harnesses the strengths
of live coding and VJing to enable flexible performances where content
can be controlled at both low and high levels. CJing has been demon-
strated by Visor, a new live coding environment that embodies the
practice (Purvis et al. 2019). Visor has been purpose-built following
a practice-based, user-centered approach to offer features for both live
coding and VJing to enable live visual performances. To determine
the effectiveness of Visor and whether CJing can effectively combine
live coding and VlJing, in this paper we reflect on Visor’s use in live
performances and evaluate feedback gathered from creative coders,
live coders, and VJs who experimented with the environment.

Background
CJING

Code jockey practice (CJing) is a new hybrid performance practice
that was first proposed by Purvis et al. (2019). CJing harnesses the
strengths of live coding and VJing to enable flexible performances
while simultaneously removing limitations identified in each practice.
In Cling, a performer known as a code jockey (CJ) interacts with
code, GUIs, and hardware controllers to improvise or manipulate vi-
sual content in real-time. ClJing is designed to complement live coding
and VlJing by providing a new approach that enables performers to

utilise aspects of both practices in the same performance. For ex-
ample, an aesthetic of CJing practice is the utilisation of live coding
as a method to improvise 'visual instruments’ on the fly. Once de-
fined, visual instruments can be performed using GUIs and hardware
controllers to generate live visuals.

Visual

Programming
. Performance
Live Tools
Programming

Custom
AudioVisual
Performance
Tools

Live Coding
Environments

Creative
Coding

Figure 1: ”Software that supports ClJing lies at the intersection of
creative coding, live programming, and VJing related software tools.”

(Purvis et al. 2019)
ClJing practice is formulated from the broader subject areas of

creative coding, live programming, and VJing (Purvis et al. 2019).
As shown in Figure [T} software that supports ClJing is placed at the
intersection of these subject areas. Purvis et al. (2019) proposes that
ClJing practice is based on three key ideas:

1. Code as a universal language: Creative coding should be used
to produce content from scratch, while live coding enables the
coded content to be manipulated on the fly at runtime. In
ClJing, code is the predominant content that is used to instruct
the visual output, similar to how musical tracks are treated in
DJing, and how video clips are treated in VJing.

2. Complete content control: CJing should allow for content to
be manipulated at both low and high levels, enabling flexible
control of the visual output during performances. The low level
aspect is provided by live coding, allowing content to be impro-
vised or edited using code. The high level aspect is provided by
VJing, allowing content to be organised into layers and manip-
ulated through effects, parameters, or hardware controls.

3. User interfaces as an abstraction: Code should be abstracted
upon by user interfaces, providing high level functionality that
would not be easy to achieve by simply writing code. Therefore,
ClJing software maintains a relationship between user interfaces
and code, for example, providing contextual interfaces that de-
tect when changes occur to the code and update themselves
accordingly. At the same time, code should be able to access
the state of interactive user interfaces.

VISOR

VisorEI is a new hybrid environment that was developed with the pri-
mary goal being to embody CJing, exploring how live coding and
VlJing can be combined into a single environment to harness the

Thttps://www.visor.live

strengths of both practices (Purvis et al. 2019). Visor achieves this
goal by offering a number of core features to facilitate live perfor-
mance: Live coding: Visor offers the ability to live code visuals with
the Processing API (Reas and Fry 2006) in the Ruby language.

e State management: Visor supports a state management inter-
face that automatically visualises and provides GUIs to update
live coded variables. For example, numeric variables are pre-
sented as sliders with configurable ranges and boolean variables
are presented as checkboxes, enabling parameters to be manip-
ulated at a high level without the need to write any code.

e Layers: Visor offers the ability to organise code into multiple
layers that are composited together into the final visual output
using a variety of blend modes. Each layer acts as an indepen-
dent Processing sketch with its own state and draw loop.

e FFT: Visor supports the fast Fourier transform (FFT) algo-
rithm to generate a frequency spectrum from an audio input
in real-time. The spectrum is visualised in the interface and
made accessible in the code, enabling audio reactive visuals.
Tap tempo: Visor offers the ability to set a tempo that can be
referenced in the code to animate visuals to the beat of live mu-
sic. The tempo can be set by repeatedly clicking a button in
the interface or by using a keyboard shortcut.

e MIDI: Visor supports a framework for configuring inputs from
external devices such as MIDI controllers using the MIDI pro-
tocol. The framework enables sliders, knobs, and buttons to
become directly accessible in the code or mapped to state pa-
rameters. Visor supports a number of other notable features
including support for multiple code tabs, support for multiple
display outputs, a console, an in-app tutorial, and in-app doc-
umentation. A number of existing features were also refactored
since Purvis et al. (2019), most notably, the REPL editor and

https://www.visor.live

the draw loop editor were merged into a single editor. The im-
plication of this is that the code that should be executed every
frame should now be scoped within a method called draw, akin
to how Processing traditionally operates. Figure [2| shows Visor
in action by presenting the Visor interface and corresponding
visual output.

Design Methodology

Visor was developed using a practice-based approach where the en-
vironment was tested in a performance context throughout develop-
ment to ensure it met the needs of a performer (in this case, the
first author). Unlike conventional software engineering processes, this
approach considers the act of developing software as a form of craft
research (Blackwell and Aaron 2015) and places emphasis on the need
for 'research through design’ (Gaver 2012). Using Visor in a perfor-
mance context during development meant that the effectiveness of the
environment could be evaluated iteratively: Existing features could
be validated, features that needed improvement could be refined, and
ideas for new features could be generated.

Practice-based approaches have been demonstrated by the Sonic
Pi and Palimpsest environments (Aaron 2016; Blackwell 2014), both
of which were developed with a consideration for craft practice and
were discussed in the context of their use in live performance. Here
we take a similar approach by reflecting on the use of Visor in live per-
formances, as presented in Section 3. Visor is also evaluated following
a more conventional user-centered approach (Abras et al. 2004) by
analysing feedback collected from respondents of an online survey,
similar to the approach taken to evaluate the Gibber live coding envi-
ronment (Roberts et al. 2014). This evaluation is presented in Section
4.

Related Work

Figure 3: Mainstage of the Taniwha’s Den 2019 music festival. The
rendered visuals are projected across multiple screens around the DJ
booth using multiple projectors. The VJ booth is situated behind
where this photograph was taken.

There are a number of software applications that support fea-
tures that coincide with Visor or the broader ClJing practice. Sonic
Pi (Aaron 2016) is a Ruby based live coding environment for creat-
ing music that focuses on simplicity to excel in computing education.
Mother (Bergstrom and Lotto 2008) is an extension to Processing
that enables VJing performances where multiple sketches can be lay-
ered together to instruct the final visual output. Auraglyph (Salazar
2017) is a live coding environment that supports visual programming
of music using a touch screen interface, offering gestural manipula-
tion akin to using a MIDI controller. Praxis LIVE (Smith 2016) is an
audiovisual live coding environment and IDE that supports creative
coding with Processing and offers GUIs that work hand in hand with
coded content. Siren (Toka et al. 2018) is a hybrid system for the

Visor File ~ View ~ Sketch ~ Settings / Sketch Server

. Layers
DPEET circles sphere :
Opacity
17 r = RADIUS + fft_range(0, 4) * 100

r r ke3 * 2 SUBTRACT 4

with_translate @pos.x, @pos.y sphere
noStroke
fill (frameCount * 1.5) % 100, 100, 100, 100 * s2 circles
ellipse 0, @, r, r

NE S ©

Default

No U B W

Circle.layer = self

NNNNNNNNNRN

© oo

regen
@circles = []
120.times
@circles Circle.new

www

ww w
QUPWNRS

User

: @circles

3

~N

@speed 10
set_range :@speed, -30, 30
: @speed
draw
fill @, 255 * ka2 0
noStroke
rect 0, 0, width, height

regen on_beat : @boxes

@circles.each Icirclel : @shape_size

circle.update
circle.draw

c Execute sphere : @fc 100785.815...

Tap Tempo Console

300

128 BPM

01234567 8 9101121314 15 16 17 18 19 20 21 22 23 24 25 26 27,28 29

Figure 2: Visor in action. The interface (left) is made up of multiple GUI elements including a live code editor (1), layer interface (2), state
management interface (3), console (4), FFT display (5), and tap tempo interface (6). The visual output corresponding to this state of the interface
is also shown (right).

composition of algorithmic music and live coding performances that
offers GUIs to interact with code. ResolumeE] is a widely used tool
for VJing that supports video mixing, a variety of effects, and allows
parameters to be animated to music in real-time using an FFT or tap
tempo.

Live Performances

Visor was used by the first author in 20 live performances to reflect
on the effectiveness of the environment as part of a practice-based
approach. The intent of the performances was to provide visuals
to accompany music performed by DJs, live coders, and other mu-
sicians, demonstrating Visor’s effectiveness in a live context. The
performances were conducted alongside a variety of collaborators at a
variety of different events including gigs, algoraves, livestreams, exhi-
bitions, research group meetings, private parties, and music festivals.
By using Visor in real performances, we explored and demonstrated
what it meant to perform with an environment that embodies CJing.
We now describe the typical performance setup, approach to using
Visor in live performances, and two notable issues concerning CJing
that were observed.

Performance Setup

The typical performance setup consisted of a number of hardware
and software components. A MacBook Pro laptop was used to run
the Visor software. A Novation Launch Control XL was used as a
MIDI controller, offering 8 sliders, 24 knobs, and 16 buttons. Where
available, a line-in from the sound desk was used as input to Visor’s
FFT, otherwise, the laptop microphone was used. Projectors were
usually provided by the venue and were either connected directly to
the laptop or routed through another computer running the Resol-

%https://resolume.com/

3https://tinyurl.com/visor-toplapi5/

ume VJ software. Resolume was used to projection map the rendered
output of Visor onto complex surfaces. An example of this is shown
in two performances that were conducted at the Taniwha’s Den 2019
music festival. In the first performance, the visuals were projected
onto multiple screens using multiple projectors, as shown in Figure
In the second performance, the visuals were projected onto a large
limestone cliff face, as shown in Figure This offered a novel live
coding and VJing experience.

Figure 4: Limestone cliff face that was used as a projection
surface during the Taniwha’s Den 2019 festival. Note the size
of the people standing at the base of the cliff.

Performance Approach

The conducted performances were generally approached in one of two
ways. The first approach was to live code from scratch and was most
similar to a traditional live coding performance, due to starting with

https://resolume.com/
https://tinyurl.com/visor-toplap15/

an empty screen. This approach was used in 10 of the performances
including the TOPLAP 15th Birthdayﬂ performance shown in Figure
This approach involved live coding the visual content throughout
the course of an entire performance. This included the live coding of
visual elements such as shapes, animations, and colours. Individual
layers of content were created progressively and introduced, manipu-
lated or removed at different times throughout the performance. Live
coding also established mappings between parameters and MIDI vari-
ables, followed by the performance of these parameters on the MIDI
controller. This approach showcased the performance aesthetic of the
CJing practice where live coding can be used as a method to improvise
visual instruments that are then performed using GUIs and hardware
controllers.

The second approach was to perform with prepared code. This
approach involved coding the visual content in preparation for the
performance and was most similar to a traditional VJ performance,
due to primarily making use of existing content. This approach was
used in 10 of the performances including the Taniwha’s Dcnﬁ perfor-
mance shown in Figure This approach involved organising visual
elements into layers where parameters of each layer were assigned to
groupings of controls on the MIDI controller. These performances
mostly focused on interaction with the MIDI controller as the content
and MIDI mappings had been defined in advance. Live coding also
occurred during these performances to improvise content or to ma-
nipulate the existing content, for example, to toggle predefined states
and attach or detach parameters from the FFT and tap tempo.

In addition to these two approaches, during two performances, a
collaborator was invited to perform alongside the author for a small
section of each performance. This collaborator focused solely on inter-
acting with the MIDI controller while the author focused on live cod-
ing and interacting with the GUI. Overall, these approaches demon-
strate respectively how Visor can be used for live coding and VJing
style performances. The crossover of these two approaches also high-

4https://tinyurl.com/visor-taniwhasden-2019/

lights Visor’s demonstration of the CJing practice where aspects of
both live coding and VJing can be used together in the same perfor-
mance.

Reflection

Using Visor in live performances helped to identify general usability
issues and aspects of the core features that could be improved. More
notably, two issues were identified concerning the broader CJing prac-
tice. The first issue relates to the idea of user interfaces as an abstrac-
tion and highlights the need for careful consideration when designing
the relationship between code and GUIs in CJing environments. This
issue was observed when interaction with layers using both the GUI
and the code would result in conflicting behaviour. For example, when
the code to set the blend mode was specified (i.e. set_blend_mode),
the blend mode set through the GUI could be unintentionally over-
ridden by the executing code. To avoid this behaviour, the live per-
formances almost exclusively used the GUI to set blend modes. This
issue highlights the importance of the relationship between code and
user interfaces in CJing environments: careful consideration should
be taken when designing a flexible CJing environment where both
live coding and VJing can be used to interact with specific features.
The second issue relates to the idea of complete control and was the
need to switch contexts between live coding and using the MIDI con-
troller. This issue was also observed in the user feedback presented in
Section 4. As both contexts required almost full attention, it seemed
impossible to live code and perform with the MIDI controller at the
same time. This was mostly observed in the early stages of the ”from
scratch” performances. In these performances, parameters of existing
content could not be tuned using the MIDI controller while the focus
was placed on live coding new content. The opposite holds true for
later in the performance when the focus was placed on the MIDI con-
troller and live coding was mostly used to make minor adjustments to

https://tinyurl.com/visor-taniwhasden-2019/

the existing content. This issue emphasises that CJs must not only
develop their skills in live coding and using the controller, but must
also learn to strike an effective balance when working across multi-
ple modalities. This highlights the importance of automated features
such as the FFT and tap tempo which continuously produce dynamic
visual effects without requiring the attention of the performer.

An approach to mitigating the friction caused by context switch-
ing in CJing was observed when a collaborator performed alongside
the first author during two performances. Utilising two performers
meant that one performer could focus on live coding while the other
focused on the MIDI controller, enabling content to be improvised
from scratch while the parameters of existing content were performed
at the same time.

Evaluation

An online feedback survey was constructed to evaluate the effective-
ness of Visor as part of the user-centered design process (Abras et
al. 2004). The survey solicited feedback from people with creative
coding, live coding, and VJing experience who had used Visor. The
Visor users who participated in the survey were asked to complete a
questionnaire that asked about their background, their usage of Vi-
sor, their outlook on Visor’s core features, how difficult they found
Visor to learn, the context in which they might use Visor, and what
they liked or disliked about Visor in general. These questions were
formatted as either Likert scales, multiple choice, or free form text
fields.

ID | Ruby | Proces-| Live VlJing | Visor Visor Con-

expe- sing cod- expe- Time text
rience | expe- ing rience
rience | expe-
rience
P1 | Little | Pro Little | Little 1-5 Performance
hours | (Live cod-
ing)
P2 | Little | Little | None None 1-5 Performance
hours | (VJing)
P3 | Little | Pro None Little 1-5 Creative

hours | coding

P4 | Little | Pro Pro Pro 5-10 Teaching
hours

P5 | Fair Fair Little Little 10+ Performance
hours | (VJing)

P6 | None Pro None None 1-5 Creative
hours | coding

P7 | None Fair None None 10+ Performance
hours | (VJing)

P8 | Pro Little | None None 1-5 Creative

hours | coding

P9 | Pro Little Little None 10+ Creat. cod.
hours & Perf.

P10| None Pro Little None 10+ Performance
hours | (Live cod-

ing)

P11| None Fair None None 1-5 Teaching
hours

Table 16.1: Feedback survey participants background, estimated time
spent using Visor, and the context in which they might use Visor.

@ Visor Edit View Window Help

Default Model
ev 0.0
set_range :@
state_to_midi

draw
background_transparent 0, (150 - 150 * ka3)

er ey

rectMode CORNER

noStroke

fill 255, 255 255 s3

rect 0, 0, width, height

rectMode CENTER

noFill

stroke 255

strokeWeight 20

translate width * 0.5, height * 0.5

sa = 800 * inv_beat_progress
sa = 300 + sin(@r * 0.2) * 300

rot = radians(frameCount) * 0.5

3.times il
a=1/2.0

s=sa*a
with_matrix

rotate rot
rect 9, 0, s, s

CIOVIEY | Execute ‘draw

Tap Tempo

@jackvpurvis - Visor

s £

Grow

PET

Model

:@p

: @v [kb2)

: @v [kb3]

0.228

Model : @model

npnAEBA N

Sketch

=

100% B3

Sun 8:19 PM

@mattmckegg - DESTROY WITH SCIENCE

Figure 5: Screenshot from the livestream of the TOPLAP 15th Birthday performance. The Visor GUI (left) is displayed alongside the rendered
visuals (top-right) and a camera recording of the physical performance by the first author and a musical collaborator, DESTROY WITH SCIENCE
(bottom-right).

Participants

In total, 11 participants completed the feedback survey since it was
launched in January of 2019. Participants were recruited through re-
cruitment messages placed on the Visor website and within the soft-
ware itself. Visor was advocated through various online forums, chat
channels, and social media groups relating to live coding, creative
coding, Processing, and VJing. The environment was also advocated
through the author’s existing networks of live coders, creative coders,
and VJs. Visor itself has been downloaded more than 900 times since
January 2019.

Participants were asked to provide background information with
respect to their experience with general programming, Ruby, Process-
ing, live coding, and VJing. To answer these questions, participants
could choose from the following options: no experience, a little expe-
rience, a fair amount of experience, or professional experience. The
results are shown in Table All of the participants reported hav-
ing more than three years of programming experience except for P7,
who had 1 to 2 years of experience.

Results

The results are grouped based on Visor’s usage, learning difficulty,
core features, and ease of use. The results about Visor’s usage and
learning difficulty were reported based on a combination of multiple
choice questions and comments received in free form questions. The
remainder of the results were reported based on direct quotes from
free form questions. These questions asked participants how effective
they found each of Visor’s core features and why, as well as what fea-
tures of Visor they enjoyed most or least. Usage: The participants
were asked to report how much time they had spent using Visor and
the context in which they might use Visor. The responses to these
questions are also presented in Table All of the participants
reported using Visor for at least one hour while five had used it for
five hours or more. P1 and P10 reported that they would use Visor

for live coding new material in performance; P2, P5, and P7 reported
that they would use Visor to VJ with pre-prepared material; P3, P6,
and P8 reported that they would use Visor for creative coding; P4 and
P11 reported that they would use Visor in teaching; and P9 reported
that they would use Visor for creative coding and in both perfor-
mance contexts. This variety of responses that were received for this
question indicates the potential versatility for Visor to be used by dif-
ferent audiences including creative coders, live coders, and VJs. Two
of the participants also made additional comments on their current
or intended usage of Visor:

"I see a lot of potential is this program, I'm trying to learn
everything as soon as possible, and have people interested
already [sic] in applying it in real clubs. I haven’t had this
much fun with a program in a while.” (P7)

"T've used visor for two creative coding projects. In one
of them, I used visor + a genetic algorithm gem that I've
published to ”evolve” visualizations ... The project got
a great response and I don’t think I would have been able
to pull it off so smoothly without Visor.” (P9)

Learning difficulty: The participants were asked to report how dif-
ficult they found Visor to learn. Seven of the participants disagreed
or strongly disagreed that it was difficult (P1, P2, P4, P5, P7, P8,
P11); three of the participants were neutral (P3, P9, P10); and one of
the participants agreed that it was difficult (P5). Some of the partic-
ipants commented on the effectiveness of the documentation. Three
stated that it was useful for helping them get started (P4, P6, P9).
It was suggested by another participant that the learning difficulty
depended on the user’s creative coding experience:

”For someone with creative coding experience, I picked it
up easily. For an absolute newbie coder, I'd put it on a
par with something like Processing.” (P3)

Live coding: Most of the participants reported enjoying the live
coding experience in Visor. Reasons for this included its similarity to
Processing (P1, P2), utilisation of Ruby (P4, P5, P9), and the fast
iteration time that was provided (P1, P6). Some of the participants
also reported issues with the live coding experience in Visor. One par-
ticipant struggled to improvise quickly, but put it down to their lack
of experience with the IDE (P4), another stated that it was tedious to
have to execute different code tabs individually (P5), and one other
mentioned that they would be more productive if they could use their
own editor (P8).

State management: The state management interface was reported
to be effective for a number of reasons. These reasons included the
ability to set ranges on values (P2), slider interactions (P5, P11),
visual confirmation for debugging (P3, P5, P6), and being able to
change variable values without inspecting the code (P2, P7, P9). One
participant also discussed specifically how the feature provided high
level control of a coded sketch:

"It was also useful for compartmentalizing the sketch into
different key pieces I can control once they were setup.”
(P6)

Two of the participants also brought up a usability issue with
the state management interface, reporting that it became cluttered
as their programs got larger and there were no options for organisa-
tion (P1, P2). One participant with extensive live coding experience
did not use the feature due to how it required them to take their
hands off the keyboard and reach for the mouse (P4), something they
were not accustomed to doing when live coding. This insight empha-
sises the issue of context switching that was also identified in the live
performances described in Section 3. The participant went on to dis-
cuss how they would have used the state management interface, MIDI
controller, and tap tempo more if they were conducting pre-composed
performances.

Layers: Visor’s ability to organise code into layers proved to be
one of the most popular features amongst all of the participants. Rea-

sons for the feature’s popularity included how they enabled switching
between scenes (P2, P7), combining sketches (P1, P2), organising
content (P4), provided a way to develop or test a piece of code in
isolation (P4, P9), provided more visual variety from less code (P8),
and were fun to experiment with (P3, P6).

Supporting comments from two of the participants were:

”Very useful. Especially if you're used to Photoshop, the
metaphor for composing layers like that makes a lot of
intuitive sense.” (P1)

”Blending modes especially were fun to experiment with
since it was easy to make many variations with just a
few sketches and it was also great to have a completely
new sketch to branch into once the starting sketch got too
complicated.” (P6)

Usability issues with layers were also identified by some of the
participants. For example, P4 raised a concern about the lack of a
keyboard shortcut to easily switch between code tabs. FFT: A num-
ber of participants claimed that they found the FF'T effective in Visor.
Reasons for this included its ease of use (P1, P3, P5, P6), visualisation
of the frequency spectrum (P2, P8), enabling audio reactive visuals
(P7, P9), or that it was something they were accustomed to (P4).
Two participants requested a need for more control over the FFT in-
cluding the smoothing (P2), volume level (P5), and adding support
for multiple channels (P5). One participant couldn’t configure an
audio input (P10).

Tap tempo: The tap tempo was reported by participants to be
effective for a number of reasons including its visual design (P2), ease
of use (P3), ability to sync visuals with a tempo (P3, P5, P6, P9), and
it’s availability in situations where neither MIDI or an audio input are
available (P8). One participant’s experience with the feature was:

"Tap tempo and the ’beat’ features was [sic] useful to
quickly get something visually interesting that was synced

to the music. As someone with limited musical experience,
being able to tap to set the tempo was much more intuitive
than typing a number.” (P6)

One participant was unsure about the tap tempo and suggested
adding options to manually tune the BPM and offset without the need
to tap (P1). One participant also reported that they did not use the
feature because they didn’t initially recognise its use in the visual arts
(P4).

MIDI: Visor’s support for MIDI was a feature that could not be
evaluated effectively as part of the feedback survey. Only one partic-
ipant managed to use a controller successfully (P4). Another partic-
ipant tried to use a MIDI controller but could not use it effectively
due to an issue with Visor or the controller (P2). The remaining 9
participants did not use the MIDI feature. This is likely due to a
lack of access to a controller, highlighting a disadvantage of this type
of remote study. A better approach to testing Visor’s MIDI support
would be to conduct an in-person user study where a controller is
provided for the participants to use.

Ease of use: One prominent theme in the results was the ease of
use of some of Visor’s features. For example, the audio input for the
FFT was reported to be easily configured through the GUI, and the
built-in methods to access the data were straightforward to use. In
general, this aspect can be summed up from the following comments:

"It was very quick to launch Visor and just start making
something interesting and dynamic, and not have to worry
about setting up different libraries.” (P6)

T liked that [sic] many options for getting dynamic input
(FFT, tap tempo, setting up buttons and sliders) and that
it was straightforward to access them within the sketch.
I found these features to be better to explore/control the
sketch’s style than typing up variables.” (P6)

The last comment also touches on the participant’s enjoyment of
the high level functionality that Visor’s features provided. This reit-

erates one of the motivations for CJing in that the high level control
provided by features of VJing software can improve the usability of
live coding.

Conclusions

Visor is a new environment for live visual performance that was devel-
oped to demonstrate CJing, a new hybrid performance practice that
combines aspects of live coding and VJing, drawing on the strengths
of both practices while simultaneously removing limitations identified
in each practice. To determine the effectiveness of Visor and whether
ClJing can effectively combine live coding and VJing, we have reflected
on Visor’s use in live performances, as well as conducted an evaluation
of feedback gathered from creative coders, live coders, and VJs who
experimented with the environment.

The use of Visor in performances has demonstrated Visor’s ability
to effectively produce visuals in a live context, at least in combina-
tion with the first author’s own performance skills. Two approaches
to performance were described: live coding content from scratch, and
performing with prepared content. These approaches demonstrate
how Visor can be used effectively for conducting aspects of live cod-
ing, VJing, and both together in the same performance, demonstrat-
ing CJing. The feedback gathered from Visor users suggests that each
of Visor’s core features were effective for their intended purpose ex-
cept for the support for MIDI, which could not be evaluated to the
extent of the other features. A number of usability issues and sug-
gested improvements were also identified. Overall, the feedback was
highly supportive of Visor and participants generally enjoyed using
the environment. The evaluation of Visor has demonstrated Visor’s
effective support for aspects of both live coding and VJing, improv-
ing the usability of live coding through high level user interfaces and
providing fine-grained control of content while VJing. This showcases
Visor’s demonstration of CJing, and in turn, how ClJing can be used
to effectively combine live coding and VJing.

Two prominent issues with CJing were also identified that need to

be considered in future work. The first was the need for careful design
of the relationship between code and user interfaces when designing
CJing environments. The second was the issue of context switching
that highlighted the need for performers to split their focus between
live coding, interacting with GUIs, and using hardware controllers.
A number of opportunities for future work have also been iden-
tified. These include further development of the Visor software to
improve usability and to offer more features to enhance the environ-
ment’s performance capabilities. Ideally, we would then conduct a
more comprehensive evaluation of the environment through a con-
trolled user study. We also hope to explore how collaboration with
live coders, DJs, VJs, and CJs can play a role in CJing practice. In
addition, we hope to explore how ClJing can be applied in other live
coding environments and in particular, within the context of music.

Acknowledgements

To Victoria University of Wellington for the Victoria Masters by The-
sis Scholarship. To the Faculty of Science for the Faculty Strategic
Research Grant. To the participants who completed the feedback sur-
vey. To those who collaborated with or provided the first author with
the opportunity to perform on various occasions.

References

Aaron, S. Sonic Pi performance in education, technology and art.
(2016). In: International Journal of Performance Arts and Digital
Media 12, 2, 171-178.

Abras, C., Maloney-krichmar, D., and Preece, J. User-centered de-
sign. (2004). In: Bainbridge, W. Encyclopedia of Human-Computer
Interaction. Thousand Oaks: Sage Publications 37, 4, 445-456.

Bergstrom, 1., and Lotto, B. (2008). Mother: Making the perfor-
mance of real-time computer graphics accessible to non-programmers.

In: re) Actor3: The Third International Conference on Digital Live
Art Proceedings. pp. 11-12.

Blackwell, A. F. (2014). Palimpsest. In: J. Vis. Lang. Comput.
25, 5, 545— 571.

Blackwell, A. F, and Aaron, S. (2015). Craft practices of Live
Coding Language Design. In: Proceedings of the First International
Conference on Live Coding.

Collins, N., Mclean, A., Rohrhuber, J., and Ward, A. (2003). Live
coding in laptop performance. In: Organised sound 8, 3, 321-330.

Faulkner, M., and D-fuse. (2006). VJ: Audio-Visual Art and VJ
Culture: Includes DVD. Laurence King Publishing.

Gaver, W. (2012). What should we expect from research through
design? In: Proceedings of the SIGCHI conference on human factors
in computing systems, ACM. pp. 937-946.

Purvis, J., Anslow, C., and Noble, J. (2019). ClJing Practice:
Combining Live Coding and VJing. In: Proceedings of the Interna-
tional Conference on Live Coding (ICLC).

Reas, C., and Fry, B. (2006). Processing: programming for the
media arts. In: AI & SOCIETY 20, 4, 526-538.

Roberts, C., Wright, M., Kuchera-morin, J., and Hollerer, T.
(2014). Gibber: Abstractions for creative multimedia programming.
In: Proceedings of the International Conference on Multimedia, ACM.
pp. 67-76.

Salazar, S. (2017). Searching for Gesture and Embodiment in
Live Coding. In: Proceedings of the International Conference on Live
Coding (ICLC).

Smith, N. C. (2016). Praxis LIVE - hybrid visual IDE for (live)
creative coding. In: Proceedings of the International Conference on
Live Coding (ICLC).

Tanimoto, S. L. (2013). A Perspective on the Evolution of Live
Programming. In: Proceedings of the International Workshop on Live
Programming. pp. 31-34.

Toka, M., Ince, C., and Baytas, M. A. (2018). Siren: Interface for
pattern languages. In: Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). pp. 381-386.

Live coding the code: an
environment for ‘meta’ live
code performance

Andrew Thompson
Centre for Digital Music, Queen Mary University
andrew.thompson@qgmul.ac.uk

Elizabeth Wilson
Centre for Digital Music, Queen Mary University
elizabeth.wilson@gmul.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Live coding languages operate by constructing and reconstructing
a program designed to create sound. These languages often have
domain-specific affordances for sequencing changes over time, com-
monly described as patterns or sequences. Rarely are these affor-
dances completely generic. Instead, live coders work within the con-
straints of their chosen language, sequencing parameters the language
allows with timing that the language allows.

This paper presents a novel live coding environment for the ex-
isting language lissajous that allows sequences of text input to be
recorded, replayed, and manipulated just like any other musical pa-
rameter. Although initially written for the lissajous language, the
presented environment is able to interface with other browser-based
live coding languages such as Gibber. This paper outlines our moti-
vations behind the development of the presented environment before
discussing its creative affordances and technical implementation, con-
cluding with a discussion on a number of evaluation metrics for such
an environment and how the work can be extended in the future.

Introduction

Live coding practice, as well as existing as a novel vehicle for the
performance of algorithmic music, also acts an extension of musical
score as a way of traversing the musical domains proposed by (Babbit
1965) - from the *graphemic* to the *acoustic* and *auditory*. Fur-
thermore, the cognitive innards of a live coder are often encouraged
to be exposed in live coding practice (Collins 2011) through the pro-
jection of patterns they encode displayed for an audience. To further
ideas of notation and exposing cognitive processes, the possibilities of
revealing performer’s notation *changes™ is presented as a novel way
of live coding.

To this end, we present a new browser-based live coding envi-
ronment for the live coding language *lissajous®. This environment
allows for the sequencing of *the text buffer itself*, a feature not often

mailto:andrew.thompson@qmul.ac.uk
mailto:elizabeth.wilson@qmul.ac.uk

available in live coding languages themselves. Before describing the
environment’s creative affordances, we provide a brief overview of the
lissajous language; describing its basic features and limitations.

Lissajous describes itself as ”a tool for real time audio performance
using JavaScript” (Stetz 2015). In practice, lissajous is a domain spe-
cific language embedded in JavaScript. It exposes a number of meth-
ods for creating and manipulating musical sequences and these can
be conveniently chained together using method chaining (colloquially
known as dot chaining).

The single most important of element the lissajous language is the
‘track‘. Tracks are able to synthesise notes or play samples such as:

a = new track()
a.tri() .beat (4) .notes (69,67,60)

This creates a new track, sets the waveform to a triangle wave, sets
the internal sequencer to tick every four 1/16th notes, and creates a
pattern of three MIDI notes that will cycle indefinitely. Similarly, we
can do:

b = new track()
b.sample (drums)
b.beat (2) .sseq(0,2,1,2)

Here, "drums” refers to an array of drum samples. We set the
sequencer to tick every two 1/16th notes and then create a pattern to
choose samples based on their index in the array.

Most parameters of a track can be given a pattern of values in-
stead of just one as is the case for notes and sseq above. These are
controlled by a track’s internal sequencer, the timing of which is set

by the ‘beat’ parameter (which can also accept a pattern of timing
values). For a comprehensive reference of the language API, we direct
readers to the lissajous language documentation.

Lissajous was chosen as the target language for the environment
for two reasons: (1) the language is relatively straightforward and so
it is easy to explain and modify, and (2) the sequencing capabilities of
the language are restricted to a predetermined collection of parame-
ters, making it an ideal candidate to show how a "meta” environment
can be leveraged for more creative control.

Motivation

Many live coding languages can be described as embedded domain-
specific languages; that is, they are libraries and functions imple-
mented directly on top of some existing programming language rather
than an entirely new language in itself. This can be observed in many
popular live coding languages such as TidalCycles (McLean and Wig-
gins 2010a), FoxDot (Kirkbride 2016), and Gibber (Roberts 2012)
which are embedded in Haskell, Python, and JavaScript respectively.
This benefits both live coding language developers and live coding per-
formers. Developers can piggy-back on an existing language’s seman-
tics and tooling, allowing them to focus exclusively on the domain-
specific nature of the embedded language. Similarly, performers can
exploit existing knowledge of the host language and perhaps even use
third-party libraries for that host language.

As noted in a more general review of music programming lan-
guages, music programming greatly benefits from the power afforded
by a general-purpose programming language (Dannenberg 2018). In
the case of live coding specifically, this creates a disconnect between
what the live coder is able to do when exploiting the general-purpose
host language and what is possible with the embedded domain-specific
language. Consider lissajous, a language embedded in JavaScript. We
saw how to sequence a pattern of notes to cycle through at quarter
note intervals:

a.tri() .beat (4) .notes(69,67,60)

Because lissajous is embedded in JavaScript we have access to ev-
erything a normal JavaScript program would; such as changing the
window background colour:

document .body.style.backgroundColor = "red"

Now suppose we wish to cycle through the colours red, green, and
blue in time with the note sequence. There is suddenly a disconnect.
The musical timing available to our lissajous track is not available for
any arbitrary code. To attempt to remedy this situation, some lan-
guages allow callback functions to be inserted into sequences instead
of primitive values.

a.tri.beat(4) .notes(function () {
document .body.style...
return

b

This can quickly becomes a mess. Live coding languages often fo-
cus on brevity and shorthand to allow complex ideas to be described
concisely (McLean and Wiggins 2010b). This effort is largely wasted
in situations like the one presented above. The live coder must now
manage state that was originally managed by the embedded language
itself such as which note to return from the function and which colour
to set the background.

At present live coders have a handful of choices to overcome this
issue: (1) simply don’t attempt things that are not easily afforded
by the embedded language, (2) seek a new language that potentially
does offer the feature needed as part of the embedded language, or
(3) modify the embedded language in some way to include the feature
you need. We present a meta environment as a fourth solution that
allows the text input itself to be sequenced, allowing for completely
arbitrary code actions to be performed in time.

Meta Livecoding

In lissajous, and indeed many other live coding languages, parameters
of a track are sequenced with patterns. Multiple parameters can be
sequenced by the same pattern, and multiple tracks can be synchro-
nised in time. The question arises of what to do when we wish to
sequence actions *not* supported by the host language’s sequencing
capabilities. Such a result can be achieved in Gibber, for example, by
encapsulating arbitrary code in an anonymous function and supplying
that function as a callback to a Sequencer constructor. In lissajous,
a track’s prototype can be modified to add extra parameters control-
lable through patterns.

Attempting to modify the prototype of an object is both expensive
to compute and awkward to do live, making this a far from optimal
solution when performing. Gibber’s sequencer is more flexible in this
regard, but the limited nature of only being able to supply *one* call-
back function encourages using this feature for minor modifications
rather than grand macro changes to a performance.

A fundamental problem is that while live coders are able to ex-
press things in an arbitrary manner, our code must follow the rules of
the system it lives in. In other words the live-coder can assume the
role of the sequencer, changing and adding various pieces of code at
fixed time intervals, but the sequencer is bound by the rules of the
host language and cannot assume the role of a live-coder.

The idea of metaprogramming is not entirely novel. Lisp, for ex-
ample, has a famously powerful macro system and a number of live

coding Lisp dialects take advantage of this fact, including Extempore
(Sorensen and Gardner 2010) and Overtone (Aaron and Blackwell
2013). What makes Lisp’s macro system so powerful is twofold. First,
macros are capable of returning arbitrary Lisp expressions to be com-
piled and evaluated at *run time*. Second is the fact that Lisp macros
are written in Lisp itself, in contrast to macro features available in
other languages such as C. Importantly, Lisp macros can themselves
be manipulated and created at run time by other Lisp functions.

The Siren environment for TidalCycles provides a graphical en-
vironment for so-called hierarchical composition (Toka et al. 2018).
Snippets of Tidal code are laid out in a grid interface representing
a scene, with columns representing individual tracks. Scenes can be
switched and tracks modified in real time, allowing for larger struc-
tural changes to be made to a performance that are otherwise awk-
ward to achieve in Tidal.

With this in mind, we have developed a metaprogramming live
coding environment that allows for sequences of code expressions to be
manipulated in the same manner that note sequences can. While Lisp
macros are capable of producing Lisp expressions, the environment,
known as Flow-Lissajous, is built around manipulating the source
code directly. In this way, it functions similarly to Siren. Where
Flow-Lissajous diverges, however, is in its use of program structures
that already exist in the lissajous language rather than a graphical
interface.

A global ‘meta‘ object is exposed in the environment that allows
for the contents of a particular text buffer to be recorded and played
back. While recording, every time the source code is evaluated that
source code is saved into an array for playback. During playback, this
sequence of source code is fed into lissajous for evaluation. Unlike
Lisp macros, however, this process is not opaque. As the source code
itself is being modified, these modifications are reflected in real time
for both the performer and audience to see. Importantly, the ‘meta’
object is a slightly modified lissajous track. This means it is pos-
sible to take advantage of lissajous’ existing pattern sequencing and
manipulation abilities

This opens the possibility of a number of creative performance
techniques not easily achieved in other environments, or indeed the
host language’s themselves. Allowing the live coder control over both
the implicit parameters of each variable and overall structure of en-
coded music provides an interesting use-case for live coding research.
Long-term structure is not often addressed in the literature, due to
the demands of immediacy and real-time musical feedback. Introduc-
tion of ideas of the “meta” provides a context with which the coder
can explore both musical parameters and structural changes through
symbolic expression.

It also adds a new dimension to live coding improvisation akin
to using looping pedals or recording audio clips into a DAW. Typi-
cally, an improvised live code performance involves the constant re-
evaluation and tweaking of code snippets with the end result being
some musical idea that represents the *sum* of the code snippets eval-
uated before it. Often the journey is as important as the destination,
however, and after tweaking 50 parameters it is difficult to remember
how we started or how we got here. To that end, the environment em-
braces the live code mantra of "repetition” by allowing performers to
capture and repeat sequences of a performance without the necessary
premeditation of setting up the appropriate tracks and sequencers.

As mentioned, this lends itself to a kind of improvisation seen in
live looping performances seen, for example, within guitar music prac-
tices. Although both live looping guitar performances and live coding
performances are typically built up by layering loops of musical ideas,
there’s a degree of permanence found in the guitar performance that is
not found in live coding performance. If we are unhappy with how
a sequence sounds we can tweak any number of parameters; we can
change the notes, add effects, alter the timing. While this is undoubt-
edly powerful, it is perhaps somewhat antithetical to the TOPLAP
manifesto’s preference of "no backups”:

No backup (minidisc, DVD, safety net computer)

Instead, much like the guitarist, live coders must now commit to
any particular sequence of events or start over entirely.

Lissajous + Flow =

var melody = [64, 66, 68,

var a = new track()
a.beat(1, 0, 0, 6, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, O, 0)| var a = new track()
a.beat(1, 0, 0, 0, 1, 1,

var b = new track()
b.beat(4).notes(melody)

var b = new track()

var ¢ = new track()
b.beat(4).notes(melody)

c.beat(4).notes(melody).trans(5)

var ¢ = new track()
c.beat(4).notes(melody).trans(5)

var melody = [64, 66, 68, 69, 71, 73, 75, 76]

Figure 1: The Flow-Lissajous environment. (Left) The code editor. Here, as with many other live coding environments, lines of code are entered

and evaluated. (Right) The last snippet of code that was evaluated. This section of the environment cannot be edited, instead always showing the

most recent piece of code that was evaluated. This provides a visualisation of what the program is doing that is especially useful when sequences @
of source code are being played back and manipulated.

Additionally, this enables a new method of performance distribu-
tion beyond distributing an audio recording or a complete source code
file. Tt is not uncommon for live code musicians to distribute code files
alongside music releases for other musicians to experiment with. This
is largely unfeasible in traditional music distribution as distributing
multi-track recordings known as stems comes at the expensive of both
file size and production time. The distribution of source code removes
a certain amount of authorial intent however, presenting a collection
of ideas curated by the musician and giving the consumer free reign
over their ultimate arrangement and use.

The environment presented here allows for a different means of
source code distribution. Instead of a complete source code file, per-
haps annotated with comments suggesting which snippets to evaluate
in what order, musicians can distribute a sequence of code expressions
to be evaluated by the environment. Given that the environment is
designed to operate in real time, listeners are free to interact with the
code at any time to make alterations or add new elements while still
affording the original musician macro control over the performance.
Transitions to new sections, or new compositions entirely can be or-
chestrated while still allowing the listener some amount of creative
freedom; encouraging a stronger dialog between the two parties that
is not afforded by full source code distribution.

Implementation

In the previous section we described a global ‘meta‘ object as a slightly
modified lissajous track. Here we will describe in more detail the tech-
nical implementation of the environment and how it operates. Lis-
sajous was initially designed to be used exclusively in the browser’s
console; heavily relying on global variables and objects. Most obvi-
ously, Flow-Lissajous provides a more graphical interface for inputting
and displaying code.

The Flow JavaScript framework was chosen to construct this inter-
face because of it’s implementation of the Model-View-Update (MVU)
application architecture. Central to the MVU architecture is the no-

tion of actions; messages passed to an update function that are used
to construct a new model of application state. This creates a deter-
ministic, stepped sequence of application states for any fixed sequence
of actions (Thompson and Fazekas 2019). Such modelling of applica-
tion state maps cleanly to the core concept of sequencing source code
changes in live coding performance.

Actions are objects with a unique string tagging the action, and
an optional payload. For Flow-Lissajous, there are three important
actions: EVAL, REC_START, and REC_STOP. The EVAL action
contains a string payload of the snippet of code to pass to lissajous
for evaluation. These actions are not unlike the actions found in the
collaborative live coding environment CodeBank (Kirkbride 2019).
Figure 2 diagrams how the Flow framework and lissajous communi-
cate with one another.

The Flow Lissajous plugin provides a thin wrapper around lis-
sajous, initialising the ‘meta‘ object when the Flow program is ini-
tialised and provides Flow a means to call ‘eval® without polluting
the Flow program with side effects. While recording, the Flow pro-
gram keeps track of every payload evaluated by the EVAL action.
Once recording stops, the array is passed to the FlowLissajous plugin
where each snippet is transformed into it’s own EVAL action. When
a sequencing method such as ‘beat‘ or ‘beat32° is called, lissajous then
dispatches an EVAL action with the current code snippet in the se-
quence. This is necessary so the Flow program can update it’s view
with the most recently evaluated code snippet.

A minor addition to the lissajous source code was made to make
it possible to interface with Flow in the way that we required. This
took the form of the creation of an additional property on the lissajous
track prototype:

self._flowSequencer = new Sequencer (function() {3});
self . _attachSequencers (self. _flowSequencer) ;

Meta track update()

A
A 4

Y \ 4 Y Y

A 4

FlowLissajous

: Flow Model
plugin

Lissajous [«

A

Figure 2: The overall architecture of the FlowLissajous environment. The grey shaded area represents the side-effect free portion of a Flow
program. This is important to guarantee the same sequence of actions produces the same sequence of rendered views. Upon receiving an action,
Flow calls the user-defined update function to create a new model of application state and optionally a side effect for the runtime to perform.
These side effects take the form of code snippets that are passed to lissajous to evaluate. Lissajous then sends actions back to the Flow runtime
when stepping through a sequence of code snippets.

and an additional function that enables a sequence of code snip-
pets to be stored on the track:

track.prototype.flow = function() {
var self = this;
var arguments_ = _parseArguments (arguments);
return function ($dispatch) {
self._flowSequencer.set (arguments_.map(snippet =>
() => $dispatch(snippet)));
self._setState(’snippets’, arguments)
}
}

It is important to note there is a clear boundary between Flow
and lissajous. These modifications do not require lissajous to have
knowledge of Flow specifically, and so alternative frameworks such
as React or Vue are equally as applicable for the view layer of the
application. As we have described, the host language - in this case
lissajous - required minimal modification to work inside the environ-
ment. This boundary between editor and language is not unlike the
boundary between language and synthesis engine found in SuperCol-
lider (McCartney 2002). In SuperCollider, this is powerful because
any arbitrary language can communicate with SCServer as long as
it knows the necessary OSC messages to send. Likewise, conceivably
any arbitrary language can exist inside the meta environment as long
as it implements the necessary Flow plugin to receive the text buffer
and dispatch actions.

Future Work

The Flow-Lissajous environment presents a novel practice of live cod-
ing by manipulating the code itself. In doing so, it affords a two new
interactions otherwise not available in existing live coding environ-
ments: (1) the ability to act as a “code conductor” for a more macro

level of control over a performance, and (2) the possibility to dis-
tribute a performance as text sequences rather than audio or a single
text file.

The environment is very much presented as a work-in-progress
however, and there are a number of research and development av-
enues to pursue in the future. Most pressing is the addition of the
ability to have multiple ‘meta‘ objects and editors for each lissajous
track created during the performance. This would bring the envi-
ronment closer in line to the Siren environment and allow for much
more interesting performance opportunities. Thanks to the largely
compartmentalised design of the environment, such a feature can be
easily implemented in the future.

The creative implications of such a system have been described
here but could be assessed using formal evaluation metrics. Within
the NIME community particularly, development of new interfaces and
instruments is becoming increasingly coupled with their evaluation
through existing HCI research. Systematic and rigorous evaluation
allows critical reflection on both the musical outputs that can be pro-
duced by an interface and the ways and means by which the tool is
used. (Wanderley and Orio 2002) posit a useful framework for exper-
imental HCI techniques applied to musical tasks, whereas (Stowell et
al. 2008) advocates for structured qualitative methods like discourse
analysis for evaluation of live human-computer music-making.

Beyond the added dimension to live performance, the presented
environment opens up interesting opportunities for the research com-
munity and the study of live code performance as a whole. Smith et
al. present an analysis of multiple live coding performances by two
separate artists through a processing of coding the screen capture of
each performance (Swift et al.2014). In this context coding refers to
labelling specific events along the performance’s timeline, noting par-
ticular actions such as code insertion or changing instrument pitch.
The authors note “future work could extend our study through the
instrumentation of the programming interface to enable automatic
data collection” and the presented environment enables precisely this
sort of automatic data collection.The presented environment enables

this kind of automatic data collection, and could easily be expanded
to include useful additional information such as a times-tamp for the
event. While it will still be required for researchers to choose when
to code a musical event,coding of textual events now becomes triv-
ial; simple analysis between events can determine whether the current
event is an insertion, deletion, or “quick edit” for example.

Acknowledgments

This work was supported by EPSRC under the EP/L01632X/1 (Cen-
tre for Doctoral Training in Media and Arts Technology) grant.

References

Aaron, S., and Blackwell, A. F. (2013) From Sonic Pi to Overtone:
Creative Musical Experiences with Domain-Specific and Functional
Languages, in Proceedings of the First ACM SIGPLAN Workshop
on Functional Art, Music, Modelling & Design, available: https:
//doi.org/10.1145/2505341.2505346

Babbit, M. (1965) The use of Computers in Musicological Re-
search, in Perspectives of New Music 3(2), available: https://
doi.org/10.2307/832505

Collins, N. 2011. Live Coding of Consequence, in Leonardo 44(3),
available: https://doi.org/10.1162/LEON_a_00164

Dannenberg, R. B. (2018) Languages for Computer Music, in Fron-
tiers in Digital Humanities, available: https://doi.org/10.3389/
£digh.2018.00026

Kirkbride, R. (2016) FoxDot: Live Coding with Python and Su-
perCollider, in Proceedings of the International Conference on Live
Interfaces

Kirkbride, R. (2019) CodeBank: Exploring public and private
working environments in collaborative live coding performance, in
Proceedings of the 4th International Conference on Live Coding

McCartney, J. (2002) Rethinking the Computer Music Language:
SuperCollider, in Computer Music Journal 26(4), available: https:
//doi.org/10.1162/014892602320991383

McLean, A. and Wiggins, G. A. (2010a). Tidal-pattern language
for the live coding of music. In Proceedings of the 7th sound and
music computing conference.

McLean, A. and Wiggins, G. A. (2010b) Petrol: Reactive
Pattern Language for Improvised Music, in Proceedings of the
2010 International Computer Music Conference, available: http:
//hdl.handle.net/2027/spo.bbp2372.2010.066

Roberts, C. and Kuchera-Morin, JA. (2012) Gibber: Live Coding
Audio in the Browser. in Proceedings of the 2012 International Com-
puting Music Conference, available: http://hdl.handle.net/2027/
spo.bbp2372.2012.011

Sorensen, A. and Gardner H. (2010) Programming with time:
cyber-physical programming with impromptu, in Proceedings of the
ACM International Conference on Object-Oriented Programming
Systems Languages and Applications, available: https://doi.org/
10.1145/1869459.1869526

Stetz, K. (2015) Lissajous: Performing Music with JavaScript, in
Proceedings of the 1st International Web Audio Conference, available:
https://medias.ircam.fr/x6b4e2d

Stowell, D., Plumbley, M. D., and Bryan-Kinns, N. (2008) Dis-
course Analysis Evaluation Method for Expressive Musical Inter-
faces, in Proceedings of the 8th International Conference on New
Interfaces for Musical Expression, available: http://www.nime.org/
proceedings/2008/nime2008_081.pdf

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.2307/832505
https://doi.org/10.2307/832505
https://doi.org/10.3389/fdigh.2018.00026
https://doi.org/10.3389/fdigh.2018.00026
https://doi.org/10.1162/014892602320991383
https://doi.org/10.1162/014892602320991383
http://hdl.handle.net/2027/spo.bbp2372.2010.066
http://hdl.handle.net/2027/spo.bbp2372.2010.066
http://hdl.handle.net/2027/spo.bbp2372.2012.011
http://hdl.handle.net/2027/spo.bbp2372.2012.011
https://doi.org/10.1145/1869459.1869526
https://doi.org/10.1145/1869459.1869526
https://medias.ircam.fr/x6b4e2d
http://www.nime.org/proceedings/2008/nime2008_081.pdf
http://www.nime.org/proceedings/2008/nime2008_081.pdf

Swift, B., Sorensen, A., Martin, M., and Gardner, H. (2014) Cod-
ing Livecoding, in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, available: https://doi.org/
10.1145/2556288.2557049

Toka, M., Ince, C. and Baytas, M.A. (2018) Siren: Interface for
Pattern Language, in Proceedings of the 18th International Con-
ference on New Interfaces for Musical Expression, available: http:
//www.nime.org/proceedings/2018/nime2018_paper0014.pdf

Thompson, A. and Fazekas, G. (2019) A Model-View-Update
Framework for Interactive Web Audio Applications, in Proceed-
ings of the 14th International Audio Mostly Conference, available:
https://doi.org/10.1145/3356590.3356623

Wanderley, M. M., and Orio, N. (2002) Evaluation of Input De-
vices for Musical Expression: Borrowing Tools from HCI, in Computer
Music Journal 26(3), available: https://www.jstor.org/stable/
3681979

https://doi.org/10.1145/2556288.2557049
https://doi.org/10.1145/2556288.2557049
http://www.nime.org/proceedings/2018/nime2018_paper0014.pdf
http://www.nime.org/proceedings/2018/nime2018_paper0014.pdf
https://doi.org/10.1145/3356590.3356623
https://www.jstor.org/stable/3681979
https://www.jstor.org/stable/3681979

INSTALLATIONS

In.recitren)
"

3PSt lMicic, ppar,
g (L
L P,
3 0

i

5

§

71

3

»

3

)

3

(c) 2020 Robin Parmar

Anatomies of Intelligence

Joana Chicau
hello@jonathanreus.com

Jonathan Reus
hello@jonathanreus.com

Artist Statement

Anatomies of Intelligence is an artistic research initiative seek-
ing tomake connections between the formats and collections of
anatomicalknowledge and investigations into the “anatomy” of com-
putational learningand prediction processes, datasets and machine
learning models. (Read moreabout our method: |https://
anatomiesofintelligence.github.io/about.html)

The Catalogue / Explorations in Collection and PreparationWe
began the project by building an online repository which gatherster-
minologies and techniques for a critical examination of the “anatomy”
oflearning and prediction processes, data corpora and models of ma-
chinelearning algorithms. This catalog is a living research docu-
ment into thehistory and present of anatomical science, as well as
“anatomies” ofartificial intelligence algorithms and data stewardship
practices. Thecatalogue is also itself a reflection on the process by
which collectionsof anatomical specimens were constructed in the for-
mative decades ofEuropean/Western anatomical science. By collect-
ing our research exemplarsas a demonstrable archive, we attempt to
explore the process of preparationand collection that reifies a collec-
tion of information into a body ofknowledge, a collection that can
be consumed and an ontology created. The catalogue itself has a
built-in javascript API and a machine learningfunction which can be
‘activated’ by writing code on the web console. Thefunctional com-
mands of the script utilizes terminologies from theanatomical theater
which guides us through the process of clustering thedifferent catalog
entries.

The Theatre / Staging Bodies of AI as Spectacle

The catalogue interface is also our platform to explore, throughperfor-
mance, how such a collection and an artisanal algorithmic toolkit can-
confront the idealized bodies of artificial intelligence — its fixedrep-
resentational structures and opaque learning processes. Inspired by
the layout of the 18th century anatomical theatre, theperformance is

web@joanachicau.com
hello@jonathanreus.com
https://anatomiesofintelligence.github.io/about.html
https://anatomiesofintelligence.github.io/about.html

divided into various interfaces:1 the catalogue entries where the clus-
tering can be visualised, projectedon to a large table;2 the web console
from the catalogue where the script runs;3 interfaces displaying code
used to sonify and visualize the processesof analysis.For this proposal
we intend to produce a video installation displaying thethree above
mentioned interfaces which guide the audience through ananatomised
live coding process.

Bio

Joana Chicau [PT/NL] is a graphic designer, coder, researcher —
with a background in dance. Her trans-disciplinary project inter-
weaves web programming languages and environments with choreo-
graphic practices. In herpractice she researches the intersection of
the body with the constructed, designed, programmed environment,
aiming at in widening the ways in which digital sciences is presented
and made accessible to the public. She has been actively participat-
ing and organizing events with performances involving multi-location
collaborative coding, algorithmic improvisation, open discussions on
gender equality and activism. [web: joanachicau.com]

Jonathan Reus [US/NL| is a musician and artist who explores
expanded forms of music-making and improvisational performance
through technological artefacts. His practice is cross-disciplinary and
research-based, involvingopen and iterative processes of collabora-
tion with practitioners from across the arts, sciences and humanities.
His work tries to confront and challenge the representational capaci-
ties of mathematical-logistical systems, algorithms, and infrastructure
through a practice of invasive intuition and trust in the diversity of
lived experiences. [web: |jonathanreus.com|

Figure 1

joanachicau.com
jonathanreus.com

Metastasis 11

Feli Cabrera Lépez
Estéticas Expandidas
rizza.av@gmail.com

Artist Statement

Metastasis II is a project born in the Electronic Arts (MFA)program
of the Tres de Febrero National University, where I investigate the
arts making processes and aesthetics from the limits of life. The work
is an experiment which uses decomposing organic materia (meat),
the states of the materia are sensed and interpreted and used for
show/generate life signs (images, sounds,behaviors, displacements).
The decomposing is evidence and appearance of another biosphere;
the microorganisms that interact with the organic materia to allow
its decomposing, generates visible color changes and environment ph
transformations, which are analyzed and interpreted. After the image
analysis of the decomposition, the results are communicated as data
to the generative sound/visual organisms, so to influence their be-
havior and to generate an a live virtual audiovisual environment.This
is a work that propose an alternative way to approach decomposing
materia, in this case, as a life motor. And which present questions be-
tween the concepts of health, nature, life and artifice. The meat and its
bacterial processes are in this work a kind of performers, they control
the parameters of the growth on the artificial (audiovisual) life. The
artificial life in this work is,in summary, structures composed of dis-
placed lines in time and space,where the image residue (the growth)
is enabler of the complex forms.This project looks to generate a se-
ries of works, textures, codes, asa virtual metaphor about biology in
relation to its displacement,time and space; based in the idea of that
every complex form, alive,is union and residue of successive accumu-
lation of simple forms. And that the sensing work of this decomposing
materia, is a enabler of ways/channels for the propagation of some-
thing that previously was territory only of the tangible-objects. In
this way, the materia as data is propagated to another territories of
the virtual world andallows to born the organisms in new organs of
the digitality. This propagation allows, as metaphor, the fecundation
of an object/work made from the limits of life and death in a techno-
corporal territory, taking other life-beings as performers in a kind of
non-human or post-human live-coding installation

rizza.av@gmail.com

Bio

Feli Cabrera Lépez aka Efe Ce Ele http://efeceele.com.ar/| Trans,
Artist, Designer and Researcher; focused on human body, abstrac-
tion,perception, physics and semiotics. MFA on Technology and
Aesthetics of Electronic Arts (UNTREF, Argentina). CoFounder
Director and Curator of Estéticas Expandidas International Festi-
val(Colombia).She research and produce in different formats such as
video art, sound art,music, audiovisual concert, generative art, in-
teractive art, installation, performance and electronic art. Currently
investigating the possible connections between body, gender, identity,
art and new media. Her work has been exhibited in different countries
such as Argentina, Colombia, Ecuador, Germany, Greece, Italy and
South Korea

Figure 1

http://efeceele.com.ar/

Memorias

Jessica A. Rodriguez
McMaster University
rodrij28@mcmaster.ca

Artist Statement

MEMORIAS is a project installation with a personal approach to
one’s body and its memory system. This memory system is built
through both individual and collective resemblances that are attached
to one’s specific historicity. MEMORIAS draws from two places: My
work in Andamio, an artistic collective which experiments with elec-
tronic literature and audiovisual practices; and, my own participa-
tion in de development of Estuary, a hosting platform for live coding
languages and networked music. The production of MEMORIAS in-
volved three steps: 1) writing six autobiographical short-stories, 2)
designing and programming six mini-languages using as conceptual
base the autobiographical stories, and 3) conceptualizing her installa-
tion art piece as a mix of the six mini-languages into one space/time.

The artistic decision of having six stories relates to how I experi-
ence the world through Hearing, Writing, Watching, Reading, Seeing
and Listening. Another artistic decision was to use Saramago’s idea
of seeing commas and points as musical pauses related to the voice,
rather than as merely grammatical punctuation/separations. For the
piece, this implies using the pause as a pivot for traveling or expand-
ing to other ideas/images/resemblances, instead of finishing or cutting
them. This pause also allows the sentences of the stories to have a
certain degree of modularity to change the arrangement without los-
ing meaning. These stories are written in two languages: Spanish and
English. Yet, they are not translations from each other but versions
that explore both similar and different ideas/resemblances.

Once the stories were finished the idea was to produce a third ver-
sion: six mini-languages that could mix natural languages but at the
same time triggered visuals or sound outputs through an ensemble en-
vironment. The conceptual part of the project involved the decisions
regarding sintaxis, as well as visual and sound specification in each
case, and the application part involved parsing existing languages in
Estuary. Three of the mini-languages are parsing Tidal Cycles but
aesthetically they’re doing different things. “Write” and “See” uses
voice samples (in English and Spanish), the recordings were cleaned

rodrij28@mcmaster.ca

and divided into sentences as well as archived by the name of each
text. In both mini-languages the most important function is the one
that allows to call randomly the samples archive in each folder, as well
as transformation that result in producing variations of each story.
“Watch” uses instrumental samples (cello and paetzold) that are also
divided and archive in different folders. “See”, and “Listen” parse
Punctual, the first uses the Audio part, and the second the visual
Part. For these mini-languages, the parameters of the sound waves,
filters and other forms are fixed within the code. Finally, “Hear”
is parsing CineCer0, and it is limited to playing, moving and sizing
pre-recorded and edited video samples.

Finally, the installation part uses Estuary’s collaborative mode
and the personalization of views in ensembles. The idea is that all
mini-languages/stories coexist in the same space. Coming back to the
idea of how we experienced the world, our remembrances, our bodies
and our memory, the installation is called “How do I move through
space/time”. Using Estuary’s platform allows the constant change
of the sintaxis of each mini-language where being in space is not a
possibility. These changes are made remotely during the exhibition
time while Estuary is running in a server, always accessing the cor-
rect ensamble to be played, show, and/or changed. This allows more
flexibility that one though using the random function within the code.

Credits: Voice in English Vic Wojciechowska (Canada); Voice in
Spanish and text edition Rolando Rodriguez (Mexico); Cello Iracema
de Andrade (Brazil-Mexico); Paetzold Alejandro Brianza (Argentina);
Technical support David Ogborn (Canada) y Luis N. Del Angel
(Mexico-Canada).

This piece was funded by the Program for Creations and Artis-
tic Development in Michoacdn (PECDAM’18). The project was also
created as part of the Networked Imagination Laboratory [NIL] at
McMaster University and through the personal collective project An-
damio.in

Figure 1

Bio

Mexico. Visual composer and researcher. Ph.D. student in Commu-
nication, New Media and Cultural Studies at McMaster University.
She has a Master of Arts with a wide work on musical/visual with

the new technologies research. She is the co-founder of andamio,
a collaboration platform where she developed performances, educa-
tional projects, and research papers. Her practical work has focused
in the collaboration with composers to produce audiovisual projects.
https://andamio.in https://rggtrn.github.io/index.html

https://andamio.in
https://rggtrn.github.io/index.html

WORKSHOPS

(c) 2020 Robin Parmar

Live Code Language Design
with Sema

Francisco Bernardo
EMUTE, Lab Department of Music, University of Sussex
f.bernardo@sussex.ac.uk

Chris Kiefer
EMUTE, Lab Department of Music, University of Sussex
c.kiefer@sussex.ac.uk

Thor Magnusson
EMUTE, Lab Department of Music, University of Sussex
t.magnusson@sussex.ac.uk

There are compelling opportunities for empowering the live coding
community with new artistic processes and outcomes that may arise
from the integration of real-time interactive signal processing and ma-
chine learning technologies, in a scalable and accessible environment
such as the web browser. This workshop is part of the MIMIC re-
search project, which explores how machine learning and machine
listening can be designed in a user-friendly way and provide for live
coding, rapid prototyping and fast development cycles of musical ap-
plications. Participants will get familiar with our live coding language
design environment and language design techniques, preparing them
to work in the creation of their own live coding languages. Partici-
pants will learn how to express sound and music concepts using signal

processing expressions. They will experiment with selected machine
learning models and machine listening JavaScript classes and explore
some of their direct benefits, including beat detection, pattern detec-
tion and generation.

Figure 1
Participants will gain understanding about workflows in our sys-
tem that will allow then to develop their own live coding mini-
language using language design techniques. For instance, they will
learn how to create, inspect and change language specifications to
generate language parsers. Participants will also explore practical
techniques for performing with the live coding mini-languages they
have constructed or customised, including live coding with interac-
tive machine learning and pre-trained generative models. Addition-
ally, the workshop will include a group discussion about participants’

experience learning and using our system.

f.bernardo@sussex.ac.uk
c.kiefer@sussex.ac.uk
t.magnusson@sussex.ac.uk

Introduction to
music-making in Extempore

Ben Swift
Australian National University
ben.swift@anu.edu.au

This workshop will provide a hands-on introduction to making mu-
sic in the live coding programming environment Extempore (https:
//github.com/digego/extempore). The workshop will cover:

e the fundamentals of making sound (starting from ”hello sine”)

e an overview of Extempore’s built-in DSP libraries (including
live coding with UGens)

e introduction to note-level live coding with Extempore’s built-in
synths & samplers

No Extempore or previous live coding experience necessary (al-
though more experienced practitioners are welcome as well). Just
bring a laptop with macOS, Windows or Ubuntu installed and we’ll
start from scratch. All the required software is freely-available, and
a binary release of Extempore will be provided (so there’s no need to
build anything from scratch).

m !
‘ |
.. \
]

|
il
l

PN #w

= — e
<8 = LI

Figure 1

ben.swift@anu.edu.au
https://github.com/digego/extempore
https://github.com/digego/extempore

Hex Osc Shift Mod

Steven Yi
Rochester Institute of Technology

syyigm@rit.edu

This workshop will explore creative uses of hexadecimal notation
(“Hexadecimal Beats”), event-time oscillators, bitshifts, and modulus
processing for live coding performance. We will explore the nature of
each technique, see how it integrates with other techniques, and learn
how to use it to generate note events as well as how to work with them
to shape a performance. The workshop will use live.csound.com, a web
environment for live coding with Csound and the |csound-live-code li-
brary, to explore each technique. A laptop is required for participants
to follow along and practice. No other installation of software is nec-
essary except to have a WebAudio-compatible browser (e.g., Chrome,
Firefox). While we will be using live.csound.com to explore the tech-
niques in the context of music, the techniques and practical experience
should be easily transferred to other live coding systems.

syyigm@rit.edu
https://live.csound.com/
https://github.com/kunstmusik/csound-live-code
https://github.com/kunstmusik/csound-live-code

Approaches to Working in a
Flexible Network,
Reimagining the Ensemble.

Amble Skuse
University of Plymouth
amble.skuse@plymouth.ac.uk

Shelly Knotts
Durham University
knotts.shelly@gmail.com

In this workshop the participants will be introduced to ways of think-
ing about diversity as a practice applicable to all. We will cover the
basics of Disability theory through a presentation, looking at barriers
which are often presented to disabled people as a result of a “normal”
approach to music making and performances. We will then explore
how we can reimagine music making and performance as a collabora-
tive negotiated experience in order to include all participants. This
second aspect of the workshop will involve taking on disparate iden-
tities, writing a “needs assessment” for this new identity and working
in small groups to create a music making and performance approach
which suits those involved. This practice hopes to highlight the ne-
cessity of ground up decision making rather than “bolt on” diversity
fixes.

This workshop is tailored to a live coding environment. Networked
ensembles provide a key opportunity for disabled people to collabo-

rate which “locational” ensembles do not. In our development of the
laptop orchestra, and collaborating live online, we open the door to
disabled and home based people in a way which other ways of music
making do not. In this context it is useful for all people involved in
networked ensembles to have an understanding of how we can create
an environment which is open to and aware of disabled music makers.

Participants get into small groups, each participant takes an “iden-
tity” card.

Person 1:

You are a person with a chronic health condition. You spend 6 days
out of 7 at your home.

You can only work every ow and again and you don’t know when
this will be, some days you are incredibly tired and cannot process
information.

You have very little disposable income.

Your computer is 8 years old.

You have a wifi connection which is relatively stable.

You can concentrate on learning new software for about 20 minutes
before needing a substantial rest.

You can communicate via telephone and online messaging.

Person 2:

You are a disabled person with upper limb difference.

You have two hands but limited finger movement which makes typing
slow and laborious.

You can leave your home several days per week.

You prefer to use a tablet for software as swiping visual displays is
easier than using text based software.

Your internet connection is stable.

You find learning new software easy.

You have a part time job which means you can only get online to play
or perform in the evenings UK time.

Person 3:

amble.skuse@plymouth.ac.uk
knotts.shelly@gmail.com

You are a paraplegic person with no use of your limbs.

You use a head mouse to control your computer. This means mov-
ing a tube with your tongue to control the curser, and blowing into
the tube as a click function. You have no double click or right click
function on your head mouse.

You have a carer who comes in the morning to help you and you can
ask this person to write e mails for you.

You don’t have any software or coding experience and require quite a
lot of support to understand how to use new programmes.

The easiest way for you to communicate is verbally.

Person 4:
You have Cerebral Palsy. Your body movements are often spasmodic
and your speech is affected considerably.
You can control a mouse and type slowly.
Your mental and cognitive functions are not affected although some-
times you get very tired.
You are excited about the possibility of working with a new music
making platform.
You have a carer who comes in the mornings to help with your daily
care and so you are not available during this time.
The easiest mode of communication is text.

In groups of 4 the participants explore each other’s identities
through a series of questions.

1. When is the best time for you to meet and play?
2. What is the best way for you to communicate with the group?
3. What is the best way for you to use a computer?

4. What problems do you experience using software and comput-
ers?

5. What would make working with this software simpler for you?

6. What is putting you off working in this way?

Then as a group they look at various live coding platforms to see
which platform would suit the ensemble.

As a group they must negotiate a working plan which allows every-
one to work in a way which suits them. The groups then report back
to each other around different issues they found with various live cod-
ing platforms, and how they overcame them as a group. What groups
dynamics arose and how did they overcome clashes of need in the
group?

With this new knowledge and experience, the groups suggest ways
in which live coding software and ensembles could be adapted or
reimagined to be more accessible to disabled users. Background to
‘Workshop

SOCIAL MODEL of Disability

&

~

Figure 1

The Social Model of Disability describes how disabled people are
not disabled by their bodies, but by a society which creates environ-

ments in which we cannot function. This is the process of society and
structures actively disabling people. As systems and built environ-
ments are often created by able bodied people for non disabled people,
the needs of disabled people are rarely taken into account, and thus
the structures created include barriers which prevent disabled people
from gaining access. For example, the person who uses a wheelchair is
disabled by the decision not to include lifts and ramps to a building.
It is the design of the environment which disables them. Following
this theory, a person with a fatigue condition is disabled from taking
part in a project because of the long days scheduled. The design of
the project has disabled the person.

Often when we think of access and inclusion we think “what do we
have to add on to our usual arrangements to make it accessible? Is it
a ramp? Is it captioning?” While these thoughts are helpful in terms
of adjusting existing situations, they negatively deflect the need for
inclusion back onto the disabled person. We think we have to make
adjustments because of the disabled person, rather than because of
the initial design failing to consider everyone who may use it. This
philosophically brings us back to centring the disabled person as the
problem, an obstacle to be overcome, an adjustment which gets in
the way of the “normal” flow of things. This recentring of the dis-
abled person as other and problematic, reinforces negative views of
disability from mainstream society. However, if we build society with
everyone in mind from the outset, we will not need to make adjust-
ments, and we will not draw attention to those who have different
needs to the majority.

The extension of the Social Model approach is the “nothing about
us without us” concept which holds that those for whom a service,
system or environment is designed, must have a contributing say as to
its design. By incorporating diverse voices in the design of something,
we can more reasonably design something which fits those it will serve.
Something which is designed for a group of individuals with complex
needs therefore, will need to be designed with each individual in mind
by consulting those people and asking what they need to flourish.

Open, high and low: writing
classes in SuperCollider

Hernani Villasenor Ramirez
Graduate Music Program, UNAM
hernani.vr@gmail.com

SuperCollider is a well known software in the context of sound live
coding. It is free, open source and have a huge community around
it. From artistic perspective, usually source code during a live coding
performance is written in a high level. A lot of black boxes operates
to facilitate the live coder to express their ideas with a high degree of
abstraction. During a live coding performance we write code based
on messages and methods for objects, classes and plug-ins to generate
sound, in this moment we don’t have to know how these technological
devices are made, just how they function. But live coding, as well
as improvisation, doesn’t come from nowhere, live coders explore the
software and its possibilities before the performance. So, What if we
explore not just the function of the software but some mechanisms
of its structure?, What if we open some black boxes to understand
better the tool and our practice? Furthermore, What if we design
some of these black boxes? This workshop aims to explore classes
and objects in SuperCollider written in sclang to show participants
how to start to write a class. This is not an expert level workshop,
but for those who want to be more confident with technological de-
velopment or curious of the SuperCollider software structure. The
aim is to write a simple class and put it in the program extensions.

The idea behind this workshop is to begin to understand the soft-
ware structure in relation to an artistic practice, and formulate some
questions regarding the relationship between computational art and
technological development in the context of the open.

Figure 1

hernani.vr@gmail.com

Open, high and low: writing
classes in SuperCollider

David Ogborn
McMaster University
ogbornd@mcmaster.ca

Jamie Beverley
University of Toronto
jamie_beverley@hotmail.com

Alejandro Franco
McMaster University
francoba@mcmaster.ca

Alex MacLean
McMaster University
macleall@mcmaster.ca

Luis N. del Angel
McMaster University
navarrol@mcmaster.ca

Jessica Rodriguez
McMaster University
rodrij28@mcmaster.ca,

In this workshop, we will demonstrate and collectively explore nu-
merous different approaches to collaborative audio-visual live coding,

taking particular advantage of the multiple languages targeting vi-
sual output within the Estuary collaborative live coding platform.
As this platform unites heterogenous languages within a single, zero-
installation, web-based platform, it is particularly well-suited to col-
laborative work between musicians and visualists (as well as people
who are both musicians and visualists!). Synchronization, data shar-
ing, and ensemble transparency (the ability to see what others are
working on) are default starting conditions with Estuary, rather than
“special features/modes”. The development of languages targeting
visual outputs has been a particular focus of recent work within Es-
tuary. The Punctual language allows WebGL fragment shaders to be
created from economical Haskell- like notations that can also, simul-
taneously, be translated into Web

Figure 1

Audio APT graphs and sound output. The CineCer0 (pronounced
“sin—ay— ser-oh”) language allows video files to be projected tem-
porally and geometrically, targeting similar functionality to that of
CineVivo, again with an economical Haskell-like notation. An even
newer, third graphics language within Estuary is projected to be avail-
able for this workshop, modelled on The Force and like that environ-
ment making it possible to write fragment shaders in “raw” GLSL.

All of the above languages can be used simultaneously within the

ogbornd@mcmaster.ca
jamie_beverley@hotmail.com
francoba@mcmaster.ca
maclea11@mcmaster.ca
navarrol@mcmaster.ca
rodrij28@mcmaster.ca

networked collaborative interfaces provided by Estuary, and as such,
in close connection with other languages that target sound output
more exclusively. This is strongly supportive of experiments with
different ways of relating sound to visuals and vice versa, and con-
sequently doing such experiments collectively will be a core activity
within the workshop.

Participants are strongly encouraged to bring their own laptops
with either the Chrome or Chromium browser installed, as well as
some type of headphones for the headphone jam. No previous experi-
ence with live coding, Estuary, or any of the languages used here is as-
sumed, so beginners are welcome and will likely take away techniques
they can put to use immediately. At the same time, the workshop’s
focus on an emerging area of interest in live coding research (better
understanding the possibilities of combined audio-visual work) will
hopefully provide something to challenge any live coding “veterans”
in the group.
https://intramuros.mcmaster.cal (Estuary, use Chrome/Chromium)

https://dktr0.github.io/Punctual (Punctual, use Chrome/Chromium)

https://intramuros.mcmaster.ca
https://dktr0.github.io/Punctual

This will be a moderately advanced workshop, and participants
will preferably have some familiarity with lisp and 3D environments.

Giving live to autonomous
agents

Ulysses Popple
ulysses.popple@gmail.com

Autonomous agents created using machine learning are a growing
presence in our world, so we should use them for art! Participants
of this workshop will livecode virtual worlds and populate them with
intelligent agents.

The workshop will start with a brief overview of tools and termi-
nology. Training (outside the scope of this workshop) is accomplished Figure 1
using Unity’s ml-agents| and simplified with ??7PersonalityQuarks.

The primary livecode interface is |Arcadial with a few helpful wrap-
pers from baisless fabricl

The first half hour - hour will be the overview and setting up tools.
Participants should download Unity and a github repository with all
the important parts set up (link to be provided later), but there’s
always going to be complications.

The remainder of the time will be spent on exploring the environ-
ment. Participants will start by creating an agent prefab and then
spawning it. Then they’ll experiment with multiple agents, then mod-
ifying the environment for agents to interact together, and finally (if
there’s time) customizing their environment with colors and lights.

By the end of the workshop, participants should have an understand-
ing of how to use autonomous agents in a live performance, and have
the tools to train their own agents and create their own environments.

ulysses.popple@gmail.com
https://github.com/Unity-Technologies/ml-agents
https://github.com/arcadia-unity/arcadia
https://github.com/ulyssesp/baisless-fabric

LUNCH CONCERTS

LS

Pagond T tewis 0 B 9

|

-

o
e
—
—
=
P
s, = s
———
TERT——

!‘

— - — —

HEFIELE
|

i
4
)
3
)
|

e 8
O N
PY -l
= - 2
s - e 1.@?' v 3 § . - - -
< \ i
—
. - ' -
3 e = e 3
> P ey 0\ - < o
= e — S—
Unr degos o
§ = [4,6,8]; r = 0.6; 5 § hi)) 'm—iglﬂf : z gﬂ}“:: 7 (B 7 vl ?
2 - Zes 5 . 3 14 OO xo0 <0 0O e 1= fexhsy “magesDarn "
.- ff'"’::siiﬁii'f?ﬁ.(‘f§§/‘4 r s4s1n (£42),(r*(-1)) ~~ r $ sin 0.25]) ; ooy 43¢ ey e 3 vy Qe d 0 4 (501048 1 rFimmep
"= - = 2%

** (1~ 2 $ sin (¥%2));

t*m* (-5) db * [1,0,sin [lo,mid,

0.7 ~~ 0.985 $ sin f >> fdbk;
t = 2; 1fo = sin [f,f*1.01],
1pf (saw $ midicps $ [60,§

* (-6) db] >> hsv <> 8;

12 + [0,2]) (1000

>> splay <> 6;

60 FPS

ampx DB]<0.30.1 02>, spoec: [1 111

0 0
el G, e (- 6040608404
0303 j 8
o WAN

AT B it
-

1507

-

0.1)8 s [ades(7, 13) ungie(S, 13" Mmrand 16)8 m=
sp0ed 0.3 1204 15°8gan 08 1.7 1.5 1" #pansnc, hinea o) *1*
every 3 (s "alex"s "~ rump " #n (rand 8) # speed "1 1.2

st 0.0.4) [2.1.53,
1.0.5p> hay © 5
1.05)>> ey < &

Yisaimd)*t*m
S 0.6>> fodk < 5

(c) 2020 Robin Parmar

Wednesday 5th - 13:00-14:00

GLSL Anywhere

Shawn Lawson
Rensselaer Polytechnic Institute

Bio

Shawn Lawson is an artist researching the computational sublime.
He performs under the pseudonym Obi-Wan Codenobi where he live-
codes real-time computer graphics with his open source software.
He has performed or exhibited in England, Scotland, Spain, Den-
mark, Russia, Italy, Korea, Portugal, Brazil, Turkey, Malaysia, Iran,
Canada, and the USA. He received grants from NYSCA and the Ex-
perimental Television Center, and he has been in residence at Cul-
tureHub and Signal Culture. Lawson studied at CMU and ENSBA.
He received his MFA in Art and Technology Studies from SAIC. He
is a Professor in and Head of the Department of Art at RPI.

Thursday 6th - 13:00-14:00

Very Long Cat

David Ogborn* & Shawn Mativetsky
*McMaster University & McGill University

very long cat is a tabla and live coding duo that rehearses and
performs over the Internet (between Hamilton and Montréal). For
ICLC2020 we propose a co-located improvisation highlighting the ca-
pacity of the Punctual browser-based live coding language to produce

generative visuals, incorporating the analysis of audio signals from
the tabla as well as transformed photographic textures.

The Punctual browser-based live coding language has been de-
veloped asa “core” language of the Estuary collaborative live coding
platform, with an emphasis on economical notations to describe how
successive definitions of the same computational entity relate to each
other intime (ie. “transitions”). The language allows graphs of os-
cillators, filters, mathematical operations, etc to be directed to both
audioand visual outputs (as Web Audio API graphs, and WebGL
fragmentshaders, respectively). In earlier performances, very long cat
made heavy use of the JITlib affordances of SuperCollider as well as
the jacktrip software for network audio — our proposed performance
for ICLC 2020 is a chance to showcase the evolution of that prac-
tice, now based heavily on zero-installation web technologies (such as
Punctualand Estuary).

Bio

Dynamic performer Shawn Mativetsky is considered one of Canada’s
leading ambassadors of the tabla, and is a pioneer in bridging the-
worlds of Western and Indian classical music. Called an “exceptional
soloist” by critic Réjean Beaucage, Whole Note’s Andrew Timar adds
that “as a leading disciple of the renowned Sharda Sahai, he has seri-
ous street cred.” Shawn Mativetsky is highly sought-after as both per-
former and educator, and is active in the promotion of the tabla and
North Indian classical music through lectures, workshops, and perfor-
mances across Canada and internationally. Based in Montreal, Shawn
teaches tabla and percussion at McGill University. His first solo
recording, Payton MacDonald: Works for Tabla, was released in 2007,
and Cycles, his recording of Canadian compositions for tabla,was re-
leased in the fall of 2011. His most recent release, Rivers, is a solo
tabla album rooted in the rich traditions of the Benares style of tabla
playing. https://www.shawnmativetsky.com/

David Ogborn / dktr0: http://www.dktr0.net hacker, composer,
artistprogrammer, live coding and guitar performer; lead developer

https://www.shawnmativetsky.com/
http://www.dktr0.net

of numerous software projects used in network music and live cod-
ing, including EspGrid, extramuros, Punctual, and Estuary; a found-
ing member of the Cybernetic Orchestra; director of the Networked
Imagination Laboratory http://nil.mcmaster.ca, and the Centre
for Networked Media and Performance (CNMAP) at McMaster Uni-
versity; Associate Professor in McMaster’sDepartment of Commu-
nication Studies and Multimedia, teaching in the undergraduate
Multimedia program, the MA in Communication and New Media,
and the PhD in Communication, New Media, and Cultural Studies
https://csmm.mcmaster.ca.

Friday 7th - 13:00-14:00

SonoTexto: live coding sound environment

Hernani Villasenior
UNAM

For ICLC 2020 I propose a live coding performance in which I will
record some fragments of sound ambience of the concert hall or space-
and live code them using sclang, for that purpose I will use the Su-
perCollider Class SonoTexto. SonoTexto is a technological object and
a performance which come froman old question of computational art
regarding the relationship between artistic practice and technological
development. In this case, the structure of the SuperCollider software
is explored to understand some technological devices that conform it
as classes in order to open some black boxes that represent the high
level of abstraction during a live coding performance. That is to say,
to explore the source code of SuperCollider to understand how a class
works and how is written. Writing classes in SuperCollider permits
not just understand the technological device itself but to modify the-

modes of production of own artistic practice.The idea behind Sono-
Texto is to record small fragments of the sound environment during
a live coding performance to control these sounds with code, that is
to say, SonoTexto, as performance, is a metaphor of live coding the
sound ambience. In this regard, some seconds of sound are recorded
in buffers with the built-in microphone of the computer or one con-
nected to a sound card. Then, the buffers are reproduced, modified
and processed through source code organized in patterns, routines or
proxy space. SonoTexto, as a SuperCollider class, has three meth-
ods:.boot call a script that have the Buffers and the SynthDefs to
record and reproduce sound; .rec records the sound into the Buffers
and .writew rites the content of the Buffers to the hard disk if the
coder wants to keep the recorded sound. SonoTexto is available here:
https://github.com/hvillase/sonotexto

Bio

Hernani Villasenor is a Mexican musician interested in sound, code
and improvisation. He is currently a PhD student at the Music Grad-
uate Program of the National Autonomous University of Mexico. His
current research is about the implications of writing source code indif-
ferent levels and layers to produce music and sound. He is also inter-
ested in artistic research and the relation of art and technology. As a
musician he performs and improvises computer music with source code
as interface in a range of styles from techno toexperimental sound.
He has collaborated with different artists in thefield of cinema, ex-
perimental video, photography and installation. He has performed in
many venues and participated in diverse conferences in countries of
America and Europe. As an organizer he have co-organized three in-
ternational symposiums dedicated to music and code called /*vivo*/
and many concerts for the Centro Multimedia CENART in Mexico.
www.hernanivillasenor.com

http://nil.mcmaster.ca
https://csmm.mcmaster.ca
https://github.com/hvillase/sonotexto
www.hernanivillasenor.com

Maths That Wiggle Air

Dimitris Kyriakoudis (wln5t0n)
Independent, Infinite Monkeys

Music is made of sound that changes over time. Sound is made of
waves that wiggle air particles over time. Those waves in turn can be
made of other waves, that change over time too. Mathematical func-
tions, in particular some of the simplest algebra taught in schools, turn
out to be particularly well-suited for looping, twisting, and bending
the flow of time to create and compose those waves.This performance
uses such mathematics to improvise a choreography of air particles.
The instrument of that improvisation is Time Lines, a functional re-
active language embedded in Haskell, used to control the parameters
of both hardware and software modular synthesizers using numerical
functions of time. Time Lines itself doesn’t synthesize the sound, it
just repeatedly asks the question: ‘If the musical time right now is
t, in seconds,then what value should each parameter of every sound
process have?’. By building upon multiple different layers of abstrac-
tion, the performer constructs a series of equations that, in parallel,
shape the linear flow of time into each answer for every moment in
time.The resulting waves are then indexed through at a 1:1 rate and
sent to various modular synthesis and effects processes, which live in
SuperCollider and hardware analog circuits.

Bio

Dimitris Kyriakoudis, occasionally known as wlnbtOn, is a re-
searcher,musician, and computational artist among the Infinite Mon-
keys. He studied music at a young age by reading and writing black
squiggles on pieces of white paper, playing them using an array of
even more discrete, but equally black and white, on-off switches. That
turned out to be a bit too limiting, so now he can be found looking up

obscure error messages and making funny noises using functional pro-
gramming and mathematics he can barely understand. He develops
TimeLines, a live coding modular synthesizer and sequencer based on
mathematics and FRP, and is obsessed with keyboard technique and
code editing ergonomics.

EVENING CONCERT
|

S | v .
d1 § every 2 (rev) s every 4 (fast 2) S s “bde2 jazz:7 [se:2 sn:2]" # note "1 3 -4 -6"

2 62 5 s "auto:7" # pan "<8,5 9,75

3 @3 s s "~ cpe3?” € pan rand
G4 5 5 “Jungbass:6” # squiz "<0.7 0.8 0.9>% 7 paa "< 0.25 0.5 0.75"

5 @54 slow2 5 "~ [8009e6]" # gain "0.7" # end "9.3" # mote "(1, <13,9>, 211" # n (irand 8)

setcps 1.4

P -y :
im:\u.{nt. (stut 2 0.5 0.125)

‘every 4 (s“ 2)

s "ssenal! amenall2e2”

sl AR oA e
hoee), 0.0, 6.8, 0

a
sometines (1+|n 12)
supervibe(3,8)]1/2* ssusflatn “{0.75 1 0.5)M4"
srocm 0.5 75z 0.9 sgain 0.85

o
o8 "<bess1i1(3,8) bass1il(6,8, 21"
“legato 2 “up “<(0 3

"

flickr sce cose o DN 6 - o

x
o Ao S LLAS A 10 S Doy K30 b U G et Qdss ema

= e
[, -
(LorenzL.ar(100)>0)#LFPulse.ar(TIRand.ar(1, 100, Impulse.ar(4))#50, 0, 0.1)*LFPulse.ar(8, 0,0.1) ‘ ' , l (l

(LFPulse.ar(100, @, 0.1)*LFPulse.ar(8, 0.5,0.5)).bitXor((LorenzL.ar(100)>0)*LFPulse.ar(TIRand.ar(1, 200,
Impulse.ar(8))*50, 0, 0.1)*LFPulse.ar(8, 0,0.1))

LFPulse.ar(150, ®, TRand.ar(@.1, ©.5, Impulse.ar(8)))*LFPulse.ar(8,
:,:.:;;ﬂtxor((LorenzL.ar(1oo)>a)tLrPu1u.ar(Tmand.ar(l. 200, Impulse.ar(8))*100, @, ©.1)*LFPulse.ar(8,

(LorenzL.ar(102)>0)*LFPulse.ar(TIRand.ar(1, 200, Impulse.ar(8))*50, @, @.1)*LFPulse.ar(8, 0,0.1) I I

-
e AL AR
——— S RS s e B
N) [~ o ’ e

Nf./

2 L

(c) 2020 Robin Parmar

Wednesday 5th of February 2020
19:30
Theater 1 Irish World Academy UL

Very Long Cat

David Ogborn* & Shawn Mativetsky
*McMaster University & McGill University

very long cat is a tabla and live coding duo that rehearses and
performs over the Internet (between Hamilton and Montréal). For
ICLC2020 we propose a co-located improvisation highlighting the ca-
pacity of the Punctual browser-based live coding language to produce
generative visuals, incorporating the analysis of audio signals from
the tabla as well as transformed photographic textures.

The Punctual browser-based live coding language has been de-
veloped asa “core” language of the Estuary collaborative live coding
platform, with an emphasis on economical notations to describe how
successive definitions of the same computational entity relate to each
other intime (ie. “transitions”). The language allows graphs of os-
cillators, filters, mathematical operations, etc to be directed to both
audioand visual outputs (as Web Audio API graphs, and WebGL
fragmentshaders, respectively). In earlier performances, very long cat
made heavy use of the JITlib affordances of SuperCollider as well as
the jacktrip software for network audio — our proposed performance
for ICLC 2020 is a chance to showcase the evolution of that prac-
tice, now based heavily on zero-installation web technologies (such as
Punctualand Estuary).

Bio

Dynamic performer Shawn Mativetsky is considered one of Canada’s
leading ambassadors of the tabla, and is a pioneer in bridging the-
worlds of Western and Indian classical music. Called an “exceptional
soloist” by critic Réjean Beaucage, Whole Note’s Andrew Timar adds
that “as a leading disciple of the renowned Sharda Sahai, he has seri-
ous street cred.” Shawn Mativetsky is highly sought-after as both per-
former and educator, and is active in the promotion of the tabla and
North Indian classical music through lectures, workshops, and perfor-
mances across Canada and internationally. Based in Montreal, Shawn
teaches tabla and percussion at McGill University. His first solo
recording, Payton MacDonald: Works for Tabla, was released in 2007,
and Cycles, his recording of Canadian compositions for tabla,was re-
leased in the fall of 2011. His most recent release, Rivers, is a solo
tabla album rooted in the rich traditions of the Benares style of tabla
playing. https://www.shawnmativetsky.com/

David Ogborn / dktr0: http://www.dktr0.net hacker, composer,
artistprogrammer, live coding and guitar performer; lead developer
of numerous software projects used in network music and live cod-
ing, including EspGrid, extramuros, Punctual, and Estuary; a found-
ing member of the Cybernetic Orchestra; director of the Networked
Imagination Laboratory http://nil.mcmaster.ca, and the Centre
for Networked Media and Performance (CNMAP) at McMaster Uni-
versity; Associate Professor in McMaster’sDepartment of Commu-
nication Studies and Multimedia, teaching in the undergraduate
Multimedia program, the MA in Communication and New Media,
and the PhD in Communication, New Media, and Cultural Studies
https://csmm.mcmaster.cal

Three Ravens

Francisco Bernardo, Chris Kiefer & Thor Magnusson
Emute Lab, School of Music, University of Sussex

https://www.shawnmativetsky.com/
http://www.dktr0.net
http://nil.mcmaster.ca
https://csmm.mcmaster.ca

We present a live coding musical performance that illustrates live
coding systems created with Semal, our new Web-based live cod-
ing language design and performance system. Using three bespoke
languages, Kiefer, Bernardo and Magnusson will collaborate on a co-
located networked musical performance where the music is live coded
in real-time. Each of the languages serves as an instrument in the
ensemble of three. This performance brings together three connected
live coding languages upported by Sema. The second iteration of
Sema(to be presented at ICLC2020) enables users to create their own
mini-language. We have created three distinct mini-languages that
serve as instruments of a musical ensemble. We explore the extent to
which these mini-languages enable expressive live coding performance.
In a live coding fashion, the screens will be projected onto the wall
enabling the audience to follow the performance as it is played on the
pidgin languages.

Bio

Thor Magnussonis a worker in rhythm, frequencies and intensities.
His research interests include musical improvisation, new technolo-
gies for musical expression, live coding, musical notation and digital
scores, artificial intelligence and computational creativity, program-
ming education, and the philosophy of technology. These topics have
come together in the ixiQuarks, ixi lang, and the Threnoscope live
coding systems he has developed.

Chris Kiefer is a computer-musician and musical instrument de-
signer, specialising in musician-computer interaction, physical com-
puting, and machine learning. He performs with custom-made in-
struments including malleable interfaces, touch screen software, in-
teractive sculptures and a modified self-resonating cello. Chris is an
experience live-coder, performing under the name ‘Luuma’. He per-
forms with Feedback Cell and Brain Dead Ensemble, and has released
music with ChordPunch, Confront Recordings and Emute.

Francisco Bernardois a computer scientist, an interactive me-
dia artist,and a multi-instrumentalist. His research is focused on
human-computer interaction approaches to toolkits that broaden
and accelerate user innovation with interactive machine learning.
In 2008, Francisco designed BEN, a language that augments Blue-
tooth naming for mobile interaction with intelligent and ubiqui-
tous environments. Francisco has performed with different acts (e.g.
FRANTICQ,:papercutz), and most recently, with his solo project
MNISTREL

Voodoo Suite

Diego Villasefior, Alejandro Franco Briones* & David Ogborn*
Independent, McMaster University™

We are proposing a performance using the libraries and platforms
developed by the authors: Nanc-In-A-Can, TimeNot and FluentCan
which emphasise poly-temporality and other forms of complex time re-
lationships. The name of the performance is Voodoo Suite in reference
to the long-scale music work by the Cuban-Mexican mambo composer
and performer Damaso Pérez Prado. This piece is characterised by
the counter position of various musical styles relevant for the author:
mambo, African traditional music and Jazz. In this spirit, we intend
to produce a multilinguistic livecoding act that not only oscillates
between beat-oriented music and polytemporal experimental textures
but also manages to express simultaneously similar or complemen-
tary compositional and algorithmic ideas with different live coding
languages, notations and platforms. Moreover,the poly-temporal and
rhythmic ideas expressed here will have a literary (words), visual and
sonic output.

Bio

Alejandro Franco Briones My interests focus on experimenting with
sonic phenomena in order to develop alternative ways to structure and
perceive music/sound art. T'wo of the major focal point for my work as
a composer/sound artists are the development of a rhythm oriented
music, and the interactions and the multi lateral flow of in formation
which occur between the composer,the programmer,thecode score, the
instrumentalists, the performer and the audience. By the act of lis-
tening, I attempt to make evident the interplay that occurs between
the audible and the muted qualities of musical reality.

Diego Villasenor de Cortina I am a composer, improviser, philoso-
pher and programmer.My work focuses on the exploration of the pos-
sibilities of modular composition, the interaction of heterogeneous en-
tities and the creation, exploration and intervention of opensystems.
Alongside Alejandro Franco Briones I am the coauthor of Nan-in-a-
Can, a SuperCollider library for the creation of temporal canons. I
am also a member of the free improvisation collective Ruido13, from
Mexico City, with whom he has worked on concepts such as, the de-
construction of the musical instrument leading sound synthesis with
acoustic instruments objects, of various forms of rhythmic texturing.

Weathery

Gerard Roma [0001]
University of Huddersfield

0001 is a project by Gerard Roma focusing on small-scale digital lo-fi
experiments. In ”Weathery”, the project explores a more rigorous ap-
proach to one-bit synthesis. The sound generators are driven (where
to?) by chaotic oscillators.

Bio

Performer: 0001

Livecoding with integrated visualization of
code information and sound impression

Hiroki Matsui
Tokyo University of Technology

This performance presents an integrated audio visualization that com-
bines code information and music abstraction contained in TidalCy-
cles. The system called RIPPLE (Real-time Image Production Plat-
form for Livecoding Environment) integrates two types of informa-
tion. The numerical values that compose themusic quantitatively are
obtained from the code. The impression of the sound is obtained in
real-time by machine learning. In the machine learning module, I use
the statistical model trained by myself to visualize the sound in a
reflection of the coder’s impressions and ideas. I try to generate visu-
als that are organically connected to music by sending the estimated
results to openFrameworks.

Bio

Born in Shimane, Japan. He received a bachelor’s degree in media
science from Tokyo University of Technology (TUT) in 2019. He is
currently studying live coding, creative coding, audio and speech sci-
ence at the graduate school of Bionics, Computer and Media Sciences,
TUT.

Bionic March: Live Coding with Voice and
Machine Listening

Alex MacLean
McMaster University

This performance will combine live coding, voice, and machine listen-
ing. The live coding will be done in TidalCycles and accompanied by
live vocals. A synth running in SuperCollider will be controlled by
both the sound created by typing on the computer’s keyboard and
the live vocals with the use of onset and pitch detection, the machine
listening component. This piece was first workshopped at the 2019
live coding intensive in the Networked Imagination Laboratory, and
for a performance at ICLC 2020 will be augmented by working with
samples from field recordings and generative visuals. The work makes
use of Nick Collins’ work on machine listening in SuperCollider (Nick
Collins. 2015. “Live Coding and Machine Listening”. Proceedings of
the First International Conference on Live Coding).

Bio

Alex (aka Monalex as a live coding artist) is a musician, songwriter,
audio/live sound engineer, and software developer from Northern On-
tario. He has played in many bands over the years and told even more
to turn their amps down on stage. His current band, Deepsea Chal-
lenger, is a progressive rock band based in Hamilton, ON that Alex
sings, writes, and plays guitar for. He holds both a diploma in Music
Industry Arts from Fanshawe College and a degree in Computer Sci-
ence from Western University and has worked for several years as a
DevOps and Cloud Engineer in the broadcast industry. More recently,
as an MA candidate in Communication and New Media at McMas-
ter University, he is investigating assistive applications of machine
learning for the performing arts.

Terpsicode

Kate Sicchio, Marissa Forbes and Zeshan Wang
Virginia Commonwealth University

This performance is a duet for dancer and coder using Terpsicode, a
developing programming language for live coding dance performance
scores. It allows a visual score for a dancer to be created in real time
as the work unfolds. The live coder is using the new programming
language Terpsicode, designed specifically for this use. The code pat-
terns images which are then projected into the performance space and
interpreted by the dancer.

Bio

Dr. Kate Sicchio is a choreographer, media artist and performer-
whose work explores the interface between choreography and tech-
nology with wearable technology, live coding, and videosystems. Her
work has been shown internationally in many countries including the
US, Germany, Australia, Belgium, Sweden, and the UK at venues
such as PS122 (NYC), Banff New Media Institute (Canada), V&and
A Digital Futures (London), and Artisan Gallery (Hong Kong). She
is currently Assistant Professor of Dance and Media Technology at
Virginia Commonwealth University.

Zeshan Wang is a motion and 3D artist interested in the relation-
ship between how people represent themselves physically and digitally.
They are currently a student at Virginia Commonwealth University
majoring in Kinetic Imaging and Computer Science.

Cibo V2

Jeremy Stewart & Shawn Lawson
Rensselaer Polytechnic Institute

The Proposal is for Cibo V2, a machine learning agent, to perform
solo. This version of the Cibo V2 agent is vastly different with multiple
changes to the deep neural network structure, performers contributed
learning data sets, additions to the visual representation of how the
agent manipulates code. Updates to agent architecture are outlined
in our technical paper submission.

Bio
Shawn Lawson is an artist researching the computational sublime. He
performs under the pseudonym Obi-Wan Codenobi.

Jeremy Stewart is a multimedia artist and performer research-
ing the affective potential of distributed media systems through the
creation of improvisational performances, artificial intelligence (A.I.)
software, and wearable hardware. Cibo V2 is the second iteration of
their machine learning agent that live-codes TidalCycles solo. The
training set for this performance comes from blind elephants, kin-
dohm, and bgold; Jeremy Stewart, Mike Hodnick, and Ben Gold re-
spectively.

EVENING CONCERT
I1

‘rainl ()

always (lp-freq (oscil 1000 2000)))
always (hp-freq (oscil 200 400)))
lifemodel t 20 33 :var 0.001

(nuc 'inrain1 (rain-4ch 'loon :start

op 'rain2)

- rain2 ()

lways (lp-freq (oscil 1000 2000)))
lways (hp-freq (oscil 400 500)))
jifemodel t 20 33 :var 0.001

(rain 'heavy :dur 600

= YT ey

g P e =
bient templates 4« ’»(—.;“
ent_templates_4ch/ra

B PN M e K7 0 St

(c) 2020 Robin Parmar

Thursday 6th of February 2020
19:30
Theater 1 Irish World Academy UL

Perang Gagal: a Series of Inconclusive Bat-
tles

Dr J Simon van der Walt

Royal Conservatoire of Scotland

with Prof. Mel Mercier and students of the Irish World Academy of
Music and Dance - University of Limerick

This performance juxtaposes livecoded ‘gamelan’ music created in Su-
perCollider with music played live on real gamelan instruments. The
title refers to a traditional set-piece scene from the Javanese wayang
kulit shadow-play repertoire. Taken literally, this scene represents a
series of skirmishes between characters from opposing armies, none
of whom emerge clearly victorious. Metaphorically it might be taken
to represent a transition between youth, as represented by the first
pathet nemscene, to the middle age of pathet sanga, while in contem-
porary performance it is an entertaining crowd pleaser that allows the
dhalang puppeteer to show off his skill in manipulating the puppets.In
this performance, the puppet battles will be imaginary, and there is
no attempt to mimic the particular series of srepeg and sampak mu-
sical forms that accompany this scene. Our intention is rather to
capture the lively and rambunctious atmosphere, while perhaps hint-
ing at the challenges and tensions inherent in combing performance
by live instrumentalists with livecoded music.

Bio

Dr J Simon van der Waltis Glasgow-based composer and performing
artist. Over the course of his career has created a varied and original
body of work, ranging from score-based composition to installation,
sound art, performance, and devised musik theater. His chief current
preoccupations are Indonesian gamelan music, livecoding, and recon-
structing thecareer of his fictional alter ego Edward ‘Teddy’ Edwards,
unsung hero of British light music electronica. He is Head of MMus
Programmes at the Royal Conservatoire of Scotland.

Professor and Chair of Performing Arts at the Irish World Academy
of Music and Dance, University of Limerick, since 2016, Professor
Mel Mercier was formerly Associate Professor of Music and inaugu-
ral Head of the School of Music and Theatre at University College
Cork. He is a traditional percussionist, composer and educator, with
an international reputation as an innovative performer, rooted in Irish
traditional music and committed to collaborating across music genres
and art forms. A renowned, award-winning composer, he has com-
posed the music for many critically acclaimed, award-winning theatre
productions and installations that have been presented at theatres and
venues in Ireland, UK, Europe and America. Awards include: Irish
Times Theatre Award for Best Soundscape for the Gare St Lazare
production of Beckett’s How It Is —Part I(2018); Irish Times Theatre
Award for Best Soundscape for the Corcadorca production of Caryl
Churchill’s Far Away(2017); the Gradam Cheoil Awardfor Collabora-
tion on CONCERT with Colin Dunne and Sinead Rushe (TG4, 2018);
the New York Festival Bronze Medal Awardfor his radio documen-
tary, Peadar Mercier(RTE Doc on One, 2017); theNew York Drama
Desk Awardand Tony Awardnomination for his sound score for Colm
T6ibin’s Testament of Mary(Broadway 2012); and a nomination for an
Irish Times Theatre Award for the Abbey Theatre/Fibin production
of Paul Mercier’s Sétanta. In 2002, he was nominated for a Drama
Desk Award for the Abbey Theatre/Broadway production of Medea

eCossystem

Char Stiles
Robotics Institute at Carnegie Mellon University

Danielle Rager
Center for the Neural Basis of Cognition

arsonist (Danielle Rager) and Char Stiles live code audio and visuals
to create a simulated ecosystem using cellular automata. The flux
of the ecosystem is reflective of the ability to dynamically alter rules
when live coding. The simulated ecosystem’s state feeds back to al-
ter the music and the visuals, leading to the genesis and destruction
of synthesized life forms and their sounds. Starting with a Shepard
tone and a sunrise, the performance begins. It builds to a crescendo
as this world driven by an alternation of Stephan Rafler’s smooth
life in GLSL. There is an appearance of Primordial Particle Systems,
as well as reaction diffusion algorithms throughout the performance.
The rules of these systems are conducted by the sounds from arsonist.
There is a narrative of creation and deterioration into chaos. Inside
of this structured ecosystem waves of natural and synthesized sounds
disturb and govern the digital landscape.eCosystem explores how live
coding can enable a musician and visualist to perform and improvise
based upon a symbiotic relationship through the medium of simple
rules with emergent behaviors.

Bio

Char Stiles is a researcher and digital artist. Using computational
systems and algorithms she is producing pieces that spans disciplines
such as video, dance, interactive installation, performance and online

works. Right now she is at the Robotics Institute at Carnegie Mel-
lon University as a research associate. She has received awards from

the Carnegie Museum of Art, exhibited internationally and talked
and gave workshops at Carnegie Mellon University, Massachusetts
Institute of Technology and New York University. Her portfolio is
CharStiles.com.arsonist is the solo musical project of Pittsburgh na-
tive, classically-trained violinist and producer

Danielle Rager. Collaging raucous electronics, manipulated vocals,
and her mother-tongue of lush string arrangements, arsonist has kin-
dled organic, texture-rich digital soundscapes in live performances
across the US. The audio/visual set that arsonist recently performed
at the Mattress Factory with digital artist Char Stiles incorporates
intricate, flexible sequencing of beats and found sounds with the live
coding environment Tidal Cycles, marrying her music with the al-
gorithmic nature of her daytime work as a Department of Energy
Graduate Fellow in Carnegie Mellon University’s Program for Neural
Computation. Rager is also a member of the improvisatory, elec-
troacoustic duo Diaphony and the DJ duo The New Hip Tiki Scene,
winners of Secret Thirteen’s 2017 New Blood mix competition.

CTRL+Z

Zeshan Wang Kinetic
Virginia Commonwealth University

This performance is simply a simulated interaction between program-
mer and programme. Using TidalCycles, the program will compose
as the want but a concurrently running Python script will be running
and attempting to play its own composition. This can be seen as
a more benign version of previouswork (CTRL-Z) where the script
would be constantly closing the composition window to impede the
programimer’s process.

Bio
Zeshan Wang is a motion and 3D artist interested in the relation-
ship between how people represent themselves physically and digitally.

They are currently a student at Virginia Commonwealth University
majoring in Kinetic Imaging and Computer Science.

Improvisation

Steven Yi
Rochester Institute of Technology

Experiments in hexadecimal beats, event-rate oscillators, bit shifts,
and modulus processing.

Bio

Steven Yiisa composer, performer, programmer, and Tai Chi practi-
tioner. He is a developer of Csound and author of various computer
music programs including Blue, Pink, Score, and csound-live-code.

He is an Assistant Professor at the Rochester Institute of Technology
in the School of Interactive Games and Media.

INFERNO

Giovanni Muzio (Kesson)

The Amazon fires have captured the attention of the world, and for
good reasons: the destruction of one of the world major carbon stores,
considered as “the lungs of the world”, could strike a devastating blow

to the fight against the climate change, and to the home of indigenous
communities. Amazon fires increased by 84% compared to the same
period last year, according to the satellite images by the Brazilian Na-
tional Institute for Space Research. Yet, cattle ranching, logging and
the production of soybeans was not only the plague for the deforesta-
tion in the Amazon Rainforest, but it affects other parts of the world,
like the Cerrado (one of the world’s most biodiverse regions), which is
50% deforested, or the Rainforest in Indonesia. Still, is not everything:
the biggest number of fires, in the month of August was in Russia, fol-
lowed by the Democratic Republic of the Congo and Brazil, according
to the satellite images of NASA and VIIRS.INFERNO is a dramatic
journey through the blazes around the globe to raise awareness about
forest fires, not only in the Amazon but, for many reasons, across the
globe. An audiovisual performance coded live, fetching both archived
and real time data of the fires around the world from NASA database
and their Near Real Time API. The performance is coded in the
Processing environment, in REPL/Hot Swap mode, it includes some
customizations (GLSL shaders, data fetching algorithms...) and it
communicates on the fly with Max/MSP and Ableton Live for the
sounds and music.

Bio

Giovanni Muzio (kesson) is an artist and researcher, graduated in New
Media Arts. In his work he defines time as an abstract dimension,
where matter is created and evolves continuously in imaginary land-
scapes. He works mostly with algorithms, mathematical formulas, in
the intersection of order and chaos. The unpredictability of random-
ness and fortuity is mixed with the order and aesthetics of maths,
in a combination that leads to poetic hallucinations. His aesthetics
is minimal nevertheless it is also inspired by the uncanny quality of
complexity, synthesized in geometric shapes with few colours, lines
of lights, real data converted in abstract geometries, inspired by the
cyberpunk and Sci-Fi imaginary.

Autobiogra-
phical Improvisation on 4 Channels

Niklas Reppel

An autobiographical performance based on found sounds, some of
which have accompanied me since my early childhood, some of which
have been recorded during the recent years. Using granular sampling,
the sounds are stretched and extended, the time information is altered
if not removed, and the sounds turn into a potentially endless texture.
The Mégra (https://github.com/the-drunk-coder/megra) system
and its simple life modeling algorithm generate subtle, if not sublimi-
nal,variations. The performer is given time and space to listen, select
and layer the sounds in an improvisational manner, melting down a
lifetime into a continously evolving stream of sound. Interaction is
calm and reduced.The multichannel setup creates additional acoustic
space to listen to, distribute and get lost in the sound, adding spatial
wideness to the impression of timelessness.

Bio

Niklas Reppel (*1983, Witten a.d. Ruhr, Germany) is a live coder and
audio software developer currently based in Barcelona. Oftentimes he
is more involved in making live coding tools than actually using them.
Coming from a multifaceted musical background that features every-
thing from jammy rock bands to contemporary chamber music ensem-
bles, improvisation and eclecticism play a major role in his current live
coding works. For more information, see:https://parkellipsen.de

00000

15 MINUTE REHEARSAL

Rafaele Andrade — Jonathan Reus

This concert is a last-minute collaboration between Rafaele An-
drade and Jonathan Reus, combining instruments of their own mak-
ing.Rafaele will perform on her KNURL, a hybrid/reprogrammable
cello, and Jonathan will perform using the live catalog interface from
the project Anatomies of Intelligence, created along with Joana Chi-
cau.

Bio

Rafaele Andrade, who grew up in Curitiba, Brazil, is a creative mu-
sician working for sustainability and ethic. Her background involves
composition, conducting, sonology. She plays cello and currently de-
signs an electric cello with a live code mode integrated on the instru-
ment. When she was only seventeen, Andrade was already assembling
and producing an orchestra of Brazilian popular music, and by the
time she was 22, she was curating a UNESCO project to promote
a group of Latin American women composers in order to showcase
their work by radio globally (R&dio Delas). This latest project is
an extension of her previous work, but also a shift into exploring
the potential of acoustic instruments to be enhanced through built-
in electronic components, as well as the potential for music to be a
shared endeavor between performers and audience members. She is
at the moment responsible for Mant, a worldwide project of sustain-
able live sound art, a project that brings environmental practices on
stage, which respect and include all the energy sources available at
the environment. Currently, she lives in the Hague, The Netherlands,
performs in Europe and Latin America, and hopes to reach even wider
audiences through her projects.

Jonathan Reus [US/NL] is a musician, educator and researcher in the
field of electronic music instruments, sonic interaction design and crit-
ical computing. His artistic work deals primarily with themes relating

https://github.com/the-drunk-coder/megra
https://parkellipsen.de

to computing culture, software and the capacities of mathematical-
logistical systems to capture and represent the world. Musical perfor-
mance is, for him, a method and means of being material. Together
with Sissel Marie Tonn, he is one half of Sensory Cartographies, an
artistic project that speculates on new forms of mapping through
wearable technologies and techniques of observation and augmented
attention.

ALGORAVE

(c) 2020 Robin Parmar

WS

Friday 7th of February 2020

19:30

Flannery’s Bar -Upper William Street -
Limerick City

7.30 Alejandro Albornoz [co(n)de Zero], Christian
Oyarzin [voodoochild], Juan AndrésJaramillo Silva
[Noisk8], (Universidad Austral deChile) - Austral

Online Streaming — A remote transmission

7.45 Christian Oyarzin Roa aka voodoochild/ (Uni-
versidad Austral deChile) - n3_M3510:

8.00 Celeste EstebanBetancur Gutiérrez (ITM -
Medellin) , Raul BenitoRevollo Sierra (ITM -
Medellin) - Deus Ex Machina by Machina

8.15 Flor de Fuego (indipendent artist), Rapo (in-
dipendent artist) — Free Software Cumbia

8.30 Ben Swift (Australian National Giovanni
Muzio (Kesson) - .hyperkosmoUNiversity) Help
Wanted: Open Port Algorave Set Streaming

8.45 Gergely Bencsik , Timea Fekete (...) - No Title

9.00 Chris Kiefer (University of Sussex, Emute Lab)
- DJ FPGA

9.15 Alex McLean (Deutsches Museum) - Prototype

9.30 Antonio Roberts (independent), Maria Witek
(University of Birmingham) - mxwx + hellocatfood

9.45 Alo Allik (independent), Elizabeth Wilson
(C4DM, Queen MaryUniversity) - digital selves +
alo

10.00 Charles Roberts (Worcester Polytechnic In-
stitute) - Untitled

10.15 NSFW (independent) osmia/Carla Sophie
Tapparo

10.45 Sarah Groff Hennigh-Palermo, Melody Love-
less, Kate Sicchio (...) - Codie Coding Coders

10.30 Shelly Knotts (Durham University) - AlgoRI-
OTmic Grrrl!

11.00 Maxwell Neely-Cohen (Independent), Zach
Krall (Parson School of Design U.S.) - No Title

=)

11.15 Shawn Lawson (Rensselaer Polytechnic Insti-
tute), Ryan Ross Smith (Monash University) - Co-
denobi & Wookie

11.30 Aleksandr Igorevich Yakunichev, Violetta
Postnova (...) - No Title

11.45 Hiroki Matsui (Tokyo University of Technol-
ogy) - Livecoding with integrated visualization of
code information and sound impression

12.00 Timo Hoogland (HKU University of Arts
Utrecht) - ¢c26h21n303+02

12.15 Niklas Reppel (...) - No Title Sgren Peter
(darch) VISOR - Blending Live Coding and VJing

12.30 Ulysses Popple & Melody Loveless (...) - Bais-
less Fabric

12.45 Alison Merri Amet (TOPLAP France) - Mer-
ristasis

1.00 Jamie Beverley (University of Toronto,McMaster
University) Jack Purvis (Victoria University of
Wellington, New Zealand) - Dead Algorave

(c) 2020 Robin Parmar

’

/

-

i€ lude <glslHeader>
out rec4 fragColor;

= voronoi(vec3(p * 10,
2 « voronoi(vec3(st * S,
» sin(v.2);

« sin(v2.2);

(c) 2020 Robin Parmar

ey
g
= z e A5 ;.\.LA‘

®s

(c) 2020 Robin Parmar

ob_2
-

ot
’{(;") * 2%
B

" slider

e (4 p

e ro, g

(o)

(c) 2020 Robin Parmar

(c) 2020 Robin Parmar

	Chair's Forewords
	PAPERS
	The Live Loom
	Cibo v2: Realtime Livecoding A.I. Agent
	Re-coding the Musical Cyborg
	Designing for a Pluralist and User-Friendly Live Code Language Ecosystem with Sema
	Live Coding From Scratch: The Cases of Practice in Mexico City and Barcelona
	Disabled Approaches to Live Coding, Cripping the Code
	Live coding in Western classical music
	Live Coding Tools for Choreography: Creating Terpsicode
	The Mégra System - Small Data Music Composition and Live Coding Performance
	Poly-temporality Towards an ecology of time-oriented live coding
	Liveness, Code, and DeadCode in Code Jockeying Practice
	Live Coding Procedural Textures of Implicit Surfaces

	POSTERS
	RIPPLE: integrated audio visualization for livecoding based on code analysis and machine learning
	Filling In: Livecoding musical, physical 3D printing tool paths using space filling curves
	Functional Live Coding vs. DAWs and VSTs
	Visor in Practice: Live Performance and Evaluation
	Live coding the code: an environment for `meta' live code performance

	INSTALLATIONS
	Anatomies of Intelligence
	Metastasis II
	Metastasis II
	Memorias

	WORKSHOPS
	Live Code Language Design with Sema
	Introduction to music-making in Extempore
	Hex Osc Shift Mod
	Approaches to Working in a Flexible Network, Reimagining the Ensemble.
	Open, high and low: writing classes in SuperCollider
	Open, high and low: writing classes in SuperCollider
	Giving live to autonomous agents

	LUNCH CONCERTS
	EVENING CONCERT I
	Programme Notes I

	EVENING CONCERT II
	Programme Notes II

	ALGORAVE
	Performers' List

