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ABSTRACT
We show how inter-device location tracking latency can be re-
duced in an Augmented Reality (AR) service that uses Microsoft’s
HoloLens (HL) devices for multi-user collaboration. Specifically, we
have built a collaborative AR system for a research greenhouse that
allows multiple users to be able to work collaboratively to process
and record information about individual plants in the greenhouse.
In this system, we have combined the HL “world tracking” func-
tionality together with marker-based tracking to develop a one-
for-all-shared-experience (OFALL-SE) dynamic object localization
service. We compare this OFALL-SE service with the traditional Lo-
cal Anchor Transfer (LAT)method formanaging shared experiences
and show that latency of data transmission throughout the server
and users can be dramatically reduced. Our results indicate that
OFALL-SE can support near-real-time collaboration when sharing
the physical locations of the plants among users in a greenhouse.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
User interface toolkits; Interface design prototyping.
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1 INTRODUCTION
Augmented Reality (AR) tools integrate digital holograms into a
user’s physical environment [Azuma 1997] and, when combined
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with real-time rendering, can allow users to interact meaningfully
with both the physical environment and the computed holograms.
One key component of an AR system is the tracking mechanism,
which allows it to place virtual objects in the real word. Fiducial
marker-based tracking is a popular way to anchor the holograms,
and is supported by systems such as the ARToolKit [Kato et al.
1999], ARTag [Fiala 2005] and Vuforia [Simonetti Ibañez and Pare-
des Figueras 2013]. AR systems using marker-based tracking have
been used in medicine [Kamphuis et al. 2014], training [Lee 2012;
Webel et al. 2013] and communication [Zhou et al. 2015]. Consumer
AR applications (e.g. those using Apple’s ARKit [Permozer and
Orehovački 2019] or Google’s ARCore [Alkandari et al. 2019]) have
also become increasingly popular in recent years.

In general, marker-based tracking supports single-person use.
The inability of such systems to understanding the physical environ-
ment greatly limits their support for multi-user applications. By con-
trast, the Microsoft HoloLens (HL) headset [Evans et al. 2017] does
support multi-user shared AR experiences using “world-tracking”
technology in conjunction with the spatial mapping generated by
each individual HL device [Turner et al. 2019]. This spatial mapping
technology creates 3D reconstructions of the physical space that
enables placement, occlusion, physics and navigation within AR
environments. With the data generated from the spatial mapping,
the shared coordinates can be used to support collaboration [Bray
et al. 2018] and several users can share information in the same
physical environment when using multiple HL devices. However,
this can introduce significant temporal latency, causing AR overlays
to become out of sync between users while the spatial maps are
synchronized between devices.

In this paper, fiducial marker-based tracking is combined with
HL world tracking to provide a low-latency collaborative AR envi-
ronment. These two technologies are combined together to create
a new method of distributed dynamic object localization. The appli-
cation context we consider is that of multiple technicians working
in a research greenhouse, where the technicians must interact with
(feed, water, and record information for) many different plants,
grouped into plant trays which are themselves mobile. We will
show how the latency of sharing data (e.g object localization with
moving objects) can be reduced using our new method. This col-
laborative greenhouse scenario is depicted in Figure 1.

This paper is structured as follows. Section 2 presents related
work on shared experiences in mixed reality services. Section 3
describes the collaborative scenario for which our system has been
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developed and discusses the marker-based and world tracking tech-
nologies used by the HL. Section 4 describes the tools used and their
roles in this collaborative system. Section 5 describes the architec-
ture of our system and the functionality that it provides. Section 6
describes how our system uses shared World Anchors to achieve
the shared experience of a collaborative AR while reducing latency.
Sections 7 and 8 describe and discuss an experiment that has been
undertaken to evaluate system latency and to compare it with a
the traditional HL collaborative architecture. Finally, Section 10
concludes the whole paper and discusses future directions for this
work.

2 RELATEDWORK
In this section, we describe existing documented methods for de-
veloping multi-user collaborative HoloLens applications using Mi-
crosoft’s Mixed Reality Toolkit (MRTK) and Unity 3D. We also
describe recent work on shared collaborative AR experiences.

2.1 Developer Documentation for Hololens
Microsoft provides a user manual for the MRTK. This user manual
gives examples of how to build a system for shared mixed-reality
experiences with multiple HL users [Zeller et al. 2019a].

When using theMRTK to build "Shared experiences in Unity" [Zeller
et al. 2019b], the manual suggests two different alternatives for de-
velopers. One is to use Azure Spatial Anchors (ASA) [Arguelles
et al. 2019] and the other is the Local Anchor Transfer method
(LAT) [Turner et al. 2018]. ASAs offer developers three main fea-
tures: multi-user experiences, way-finding and persisting virtual
content in the real-world [Arguelles et al. 2019]. These features
provide developers the tools to design and build a multi-user AR
system, however developers are required to use an external Azure
cloud service to provide the ASAs. This may not be possible (if the
environment is air-gapped from the wider internet) or desirable
(due to regulations around data storage and provenance). The sec-
ond alternative is the LAT technique, where each HL can export
a World Anchor which can then be imported by another HL de-
vice, without the need to communicate with the external Azure
service [Turner et al. 2018]. The benefits of the LAT method are
that it is less complicated than using ASAs, and that it can be built
as a standalone C# application in Unity. However, the drawbacks
are that LAT does not support iOS and Android devices [Zeller
et al. 2019b] and that it provides “less robust" anchor recall than
ASA [Turner et al. 2018].

We also need to emphasize that our "one-for-all-shared-experience"
(OFALL-SE), method described below in Section 6, is modified from
Microsoft’s OFALL method [Zeller et al. 2019c]. The Microsoft doc-
umentation does not describe whether and how OFALL can be used
for multiple-user scenarios (shared experiences) apart from stating
that it could be used with the latest version of ASA. Thus, it is worth
investigating how OFALL can be adapted for shared experiences
and whether it can be also integrated with LAT. Although in their
document, they suggested using ASA rather than LAT and also em-
phasized that LAT transfers the anchors by using device-to-device
(without internet) process [Turner et al. 2018], we also developed
a customized cloud server to achieve the anchor sharing process
from internet by using LAT and this could also tackle the problem

that the developers may concern about the privacy issues while
sending the spatial anchors to MS’ server by using ASA. We will
return to discuss the technical details of OFALL-SE and of World
Anchors in more detail in Section 6.

2.2 Collaboration for Socialization
Zhang et al. present a prototype for collaboration in augmented real-
ity that they call “Collaborative Augmented Reality for Socialization
(CARS) [Zhang et al. 2018]”. CARS was developed to improve the
user-perceived Quality of Experience (QoE) for AR while sharing
the overlapped virtual holograms with object recognition technol-
ogy through multiple users’ smart phones. They also emphasized
the need to reduce the end-to-end latency on network transmission
and recognition time in their system in order to improve user expe-
rience. In their paper, Zhang et al. observed that “CARS does not
require localization” and note that “localization alone is not enough
for AR. Even if we know which painting a user is looking at via
localization, it cannot tell us the position of that painting within a
camera view for augmentation.” [Zhang et al. 2018]. However, even
if localization is not sufficient for a quality AR experience, the qual-
ity of localization itself is greatly improved using AR technologies
such as the HL. Indeed, the results of the present paper will show
that HL technology can be generally used to determine an accurate
localization and that this localization can be shared with multiple
users with low latency.

3 COLLABORATIVE SCENARIO
Greenhouses are used extensively in scientific research and agri-
cultural trials. In modern greenhouses, trays of plant seedlings are
subjected to varying conditions (plant type, nutrition, watering,
temperature, etc.) and plant characteristics are measured over time.
A picture of a typical seedling tray is shown in Figure 2.

The collaborative scenario we consider in this paper is one with
a group of technicians working in a greenhouse which contains
hundreds of seedling trays. Each tray needs to be labelled with the
characteristics of each seedling in that tray, and each tray will need
to be regularly moved from its growing site to other sites in the
greenhouse in order to take measurements, for watering, etc. In
such a workflow, the plant trays will be passed from one technician
to another, and it may or may not be important that a plant tray is
eventually returned to its original growing location.

Clearly, labelling the plant trays using tags such as a QR code
makes them amenable for interactive tracking and data analysis
using computer systems. Conventionally, this has been achieved
using mobile devices. Using some extant systems [Wagner et al.
2005] a technician is able to scan a tray’s label and read or enter data
for the plants within the tray. The technician is then able to update
this data once the plant tray has been moved to a new location. Such
a workflow involves frequent stopping and use of mobile devices,
which usually involve both hands to operate. An objective of our
system was to explore whether an augmented reality headset could
allow the continuous update of plant tray information and location
while a technician is using both of their hands to lift, transport
and otherwise process the plant tray. In our system, AR holograms
show data menus associated with each slot in a plant tray as in
Figure 3.
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Figure 1: A collaborative scenario showing technicians wearing HoloLens devices interacting with plants in an example green-
house. Plant data (location and other information) is always shared and updated among all users in real-time via a cloud server
(which also provides persistent storage).

Figure 2: A plant tray containing 19 slots for growing plant
seedlings and one slot with a QR code for identifying this
particular tray.

4 SYSTEM TECHNOLOGIES
Our system is based on the following technologies:

• Head-mounted display (HMD): the Microsoft HoloLens (HL)
(1st gen) [Evans et al. 2017] is an AR headset that provides
stand-alone computation to enable users to interact with
holograms overlaid on their view of the world.

• Software rendering: Unity 3D is a game engine developed by
Unity Technologies that is widely used in AR development.
In this project we used Unity version 2018.3.5.

• Marker-based tracking: Vuforia [Simonetti Ibañez and Pare-
des Figueras 2013] is an AR platform that plugs into Unity

Figure 3: View of a plant seedling tray through an AR head-
set showing data menus for the individual slots in that tray.
In the hologram, arrows indicate which information be-
longs to which slot in the plant tray.

to provide computer vision functionality such as object and
QR code recognition.

• User interaction: The Mixed Reality Toolkit (Version 2 [Mi-
crosoft 2019]) is provided by Microsoft for developers to
build Hololens applications within Unity.

• Data transmission and storage: a CentOS 7 cloud server
(1vCPU, 1024MB RAM, 25GB SSD) hosted the infrastruc-
ture for data storage and sharing data between HL devices.
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The server application uses Python (application code) and
MySQL (relational database). The data stored by the server
included the physical location of each plant tray in the green-
house, as well as the plant information data (PID)—typically
plant height and seed data—for each plant in every tray. Com-
munication and data exchange between the server and HL
devices was done over TCP using a JSON data format.

5 SOFTWARE ARCHITECTURE
Based on the needs of the greenhouse users in their collaborative
workflow, we designed an interface to allow technicians to record
the plant information data such as seeds, height etc. This interface
contains two parts:

(1) a Plant Information Panel (PIP) showing detailed information
about a specific plant and providing an interface for updating
this plant data (see Figure 4)

(2) a Plant Name Panel (PNP) for showing an overview of all
plants in the tray

The PNP allows users to identify each plant in a given plant tray;
the display of all PNPs for a given tray can be seen in Figure 3—
we call this a PNP set. The Location label indicates the coordinate
location of each plant inside the plant tray, while the Pot Number
label indicates the index (from 1–19) of the pot inside the plant tray.

At startup, the system will display the PNP set (as shown in
Figure 3) for each plant tray, while each PIP is deactivated (invisible)
until a technician clicks the corresponding PNP. In other words,
the overview information is shown by default, while the detail
information for a given plant is hidden until requested.

In a multi-user scenario, plant trays may be moved outside the
field-of-view of a given user. As the technicians move around the
greenhouse, if the HL successfully tracks a new QR code (with the
Vuforia Engine), the technician may click a virtual button above this
QR code and the systemwill automatically generate a PNP set above
this new plant tray. If this tray already has a PNP set displaying
somewhere else (e.g. from the plant tray’s previous location, as
moved by another technician) the system will move that PNP set
to new location of this QR code. If the technician moves the plant
tray to a new location in the greenhouse, the system will similarly
update the location of the PNP set display. In addition, when a
technician clicks the virtual button above a plant tray, the system
will automatically upload the latest location of this plant tray to
the database, and immediately update this information in the HL
display of any other technicians in the greenhouse.

When a technician launches the system by turning on the HL and
loading up the application, the application will first synchronize
the current information of all plants in the database, and update
their location and information accordingly. After this initial data
synchronization step, the system will present a Plant Assistant
Panel (PAP) which has three buttons:

• Synchronize: synchronize the plant data (in case the tech-
nician has network connectivity issues and failed the auto-
synchronization step, or requires a manual re-sync for other
reasons)

• Main Tools: open up a context-sensitive tools menu (used
in our case for running latency experiments as described in
Section 8)

Figure 4: The plant interface designed in Unity for users to
record the data.

• View Map: display the status map of all the PNP sets in the
greenhouse (this status map is shown in Figure 5)

The most important part of the status map is the navigation
function. This feature allows the HL display to guide the technician
(by displaying a holographic direction arrow) to a particular plant or
plant tray. This arrow is dynamic, and even as the technician moves
will always point in the direction of the plant (as seen in Figure 5).
This is especially useful in large greenhouses with hundreds of
plant trays.

Figure 5: The navigation view—note the blue arrow to the
left of the display, which indicates the direction of the par-
ticular plant being searched for.

6 WORLD ANCHORS AND SYSTEM LATENCY
The core goal in designing in this system is to achieve multi-user
collaboration with low latency synchronization for greenhouse
workers to share plant data. There are two types of data that are
needed to be shared among the greenhouse workers:

• The physical locations of the plant trays in greenhouse.
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• The plant information data (PID) that is input and edited
by users. The exact size and format of the PID will vary
depending on the plant, then experiment being run and the
needs of the greenhouse technicians. It will typically include
plant height, seed number, and relevant planting and harvest
dates.

The PID is plain text, designed primarily for humans to read and
write, and is relatively straightforward to store and share between
HL devices. The more challenging part of the data sharing problem
is the task of sharing the physical locations of the plant trays.

In order to share real physical locations among different HL de-
vices, the MRTK provides a method to acquire physical locations
using a “spatial map” to track the world (also known as a “World
Tracking” method). The basic principle of this method is to over-
lap views of objects in the real world with a collection of virtual
geometry surfaces. HL devices are then able to recognize the real
world through this World Tracking method and transmit (share)
the physical locations to each other.[Turner et al. 2019]

In Unity 3D, the location of a game object in a virtual scene
is represented as a 3D vector relative to the scene’s co-ordinate
system. However, each HL device has a different co-ordinate system
(initialised at start-up). As a result, physical location shared between
HL devices cannot be represented by a simple 3D vector, but as a
data structure known as aWorld Anchor (WA) [Vassallo et al. 2017].
WAs are necessary for two reasons in building a collaborative HL
system:

• They can be used to persist the physical locations of holo-
grams in HL devices. This indicates that the same WA com-
ponents could be shared among users’ HL devices and ensure
that all users could see the same holograms in the same phys-
ical locations while they are working together in the same
working space.

• They can stabilize the holograms inHL devices. The locations
of holograms in HL device would be changed if the HL device
loses tracking in the world (for example if the brightness of
the space is too low the HL may temporarily lose tracking).
Also, if the user gets too far away from the holograms, they
will also become unstable (and start “shaking”) in the HL
display.

In order to use Unity World Anchors in a collaborative HL appli-
cation, WA data needs to be serialized and transmitted to a server
and then downloaded and de-serialized at a later time. This can give
rise to considerable latency in a collaborative application where a
group of HLs are attempting to synchronize their data. The size of
the WA is dependent on the complexity of the physical environ-
ment. MS have not published an official specification for the size of
the WA, but our testing in the greenhouse environment shows that
each WA object is approximately 10MB (uncompressed) in memory.

We now consider two alternative designs that demonstrate this
latency problem.

6.1 One-for-one Locating
This one-for-one location-sharing technique is so-called because
it requires one World Anchor (WA) object per tracked object (i.e.
per plant tray). This one-for-one method is suggested by Unity
Official Document [UnityTechnologies 2019]. In our greenhouse

ALGORITHM 1:One-for-one Locating with Local Anchor
Transfer
Users: Synchronize All WAs and PIDs;
while true do

forall Users u in UserList do
if u Moves(PlantTray) then

UploadToServer(WA);
end
if u Modify(PIDs) then

UploadToServer(PIDs);
end
ServerNotify(u_new in UserList.delete(u));

end
end

scenario, this one-for-one localization approach is shown in Fig-
ure 6, which shows 5 plant trays, each with a corresponding WA
attached. The physical locations of these 5 plant trays would be
determined by these 5 correspondingWAs, and so eachWAmust be
sent to the server and communicated to any other HL devices. The
synchronization algorithm pseudo code is shown in Algorithm 1.
Note that any of the five plant trays may be moved at any time by
the greenhouse technicians, triggering a full re-synchronization.

Figure 6: The relationship between the plant trays and the
attached WAs (red circles) in a sample greenhouse with the
one-for-onemethod. Note that there are 5 plant trays in this
example.

In the greenhouse workflow, two types of data events may be
triggered by users. One is plant data generation and access, and
the other is the synchronizing of location data. When a user first
launches the system, the HL device is unaware of any plant trays,
and a synchronization request is needed to synchronize all the
stored WAs (physical locations of the plant trays) and the PIDs.
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Once the system is running, any movement of any of the plant
trays requires generating and storing this updated location to the
database, and synchronizing this new location (via the new WA)
among all other HL devices.

Because of the size of the WA data object, the data transmission
latency using this one-for-one approach is significant (as we will
show in Section 7). The plant information data also needs to be
transmitted among users, however this data is much smaller (2̃00
bytes). Thus the major issue which will affect the latency on this
collaborative system is caused by the WA operations which include:

• Serializing the WA (with WATB.ExportAsync() in Unity)
de-serializing (with WATB.ImportAsync() in Unity).

• Transmitting (over wifi) the serialized WA from user to
server and then on to all other users.

6.2 One-for-all (OFALL) Locating

ALGORITHM 2: OFALL Locating
Administrator: Setup one WA on server;
Users: Synchronize One WAs and All PIDs;
while true do

forall Users u in UserList do
if u Moves(PlantTray) then

UploadToServer(PlantLocationData);
end
if u Modify(PIDs) then

UploadToServer(PIDs);
end
ServerNotify(u_new in UserList.delete(u));

end
end

In contrast, the modified method that we use in our system
is called "one-for-all-shared-experiences" (OFALL-SE) locating, in
which one "reference" WA is used per device, and the location of
each plant tray is calculated relative to the reference WA. Instead
of using a WA to represent the physical locations of each plant tray,
the OFALL-SE method uses only a lightweight (x ,y, z) 3-vector in
each device’s scene coordinate system, combined with an offset to
the reference WA.

Storing one WA is still necessary because HL uses its built-in
spatial map to locate the holograms in the physical world. If the
system stores only the device’s scene co-ordinate, all the holograms
would be offset when HL loses its world tracking. Storing an offset
to the WA means that even if a given HL device loses its world
tracking, it will recover all the holograms once it is able to track the
world and recognize the physical space again. Therefore, this new
method combines Unity’s orientation system with WA together
to allow the system to send only the bytes of the 3D vectors to
other users whenever a plant is moved, so that the other devices
can update the locations of their holograms of plant trays. This new
method is represented graphically in Figure 7.

The referenceWAobject shown in Figure 7 is the core component
in this new method: it is used to determine the locations of all the
other holograms in other HL devices. In this new method, the WA

Figure 7: The diagram of the relationship between the plant
trays and the reference WA object (red circle) in a sample
greenhouse with the OFALL method. Note that there are 5
plant trays in this example.

only needs to set once and could be managed by an administrator;
users will not need to interact with the WA to update the plant
location data. This new procedure is shown in Algorithm 2.

Each WA would be sufficient for all users working in the same
greenhouse. If multiple greenhouses are required, then the adminis-
trator could generate multiple WAs for these greenhouses and users
could synchronize the corresponding WA in different greenhouse
as required.

One key difference between Algorithm 1 and Algorithm 2 is
that the expensive WA serialization and transfer operations are no
longer inside the loop. Instead, the system will serialize only the
3D vector offsets of the plant trays and to be sent to the server and
other HL devices. The major benefit of this new method is that the
size of the location data of plant trays under this method is very
small—around 200 bytes, much smaller than the 1̃0MB WA.

To summarize the two different collaborative location-sharing
approaches:

• One-for-one: plant tray hologram requires a separate WA to
locate into the physical world. Transmitting the WAs among
users has higher latency due to the size of WA.

• One-for-all-shared-experiences: one reference WA is needed
to determine all the physical locations of the holograms of
plant trays. Representing the location of holograms of plant
trays is achieved using the offset position in the HL device’s
scene space.

7 EXPERIMENT
In this section, we report the results of an experiment to empirically
investigate the synchronization latency for different numbers of
plant trays between the one-for-one and one-for-all methods.
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This experiment was done in a research greenhouse at the Aus-
tralian National University (ANU) Plant Phenomics Facility.

The experimental system was as described in Section 4. For
different numbers of plant trays, the time-to-completion of syn-
chronizing the PNP set to greenhouse (the synchronization latency)
was be measured by the HL software and stored in the database.

For this test, we prepared 8 WAs (corresponding to 8 plant trays
in the greenhouse) which the HL would import in order to locate 8
PNP sets. In this experiment, the HL did not need to download the
initial WAs from server (this data was cached locally) so as to only
measure the time to synchronize the locations between HL devices.

In this experiment, we investigated the latency cost during the
location of the 8 PNP sets corresponding to 8 plant trays in green-
house. The experiment involved completing a specific scenario—
locating all the PNP sets in the HL device—with both one-for-one
and one-for-all methods and between 1 and 8 plant sets. In each
scenario, the full procedure was repeated 10 times, with the total
time measured in each case. All latency timings were measured au-
tomatically and uploaded to the database once the locating process
had been completed.

A sample procedures of measuring the latency with the one-for-
one method is:

(1) Set the number of PNP sets which are required to be located
in the greenhouse throughout HL device (From 1 to 8).

(2) Press the button "Sync with Old system".
(3) Wait for the process until all the PNP sets have been success-

fully located and the colour of the indicator cube would be
turned into green.

(4) The latency time would be shown in the content "Time Used
Status", and also stored into the database.

(5) Clear all the existing PNP sets which had been located by
clicking the button "Reset".

(6) Repeat Step 1 to 6 by 10 times with increasing numbers of
PNP sets

An image of the interface upon completion of a successful ex-
periment is shown in Figure 8.

Figure 8: A view of the interface after associating all PNP
sets with their corresponding plant trays with one-for-all
method.

7.1 Results
Two sets of latency times were measured. One from the one-for-one
method, which only includes the time taken to synchronize the
corresponding number of WAs to locate the PNP sets. The other is
the measured latency from the one-for-all method which not only
includes the time used on synchronizing one WA for the reference
object, but also on synchronizing the stored plant location data
from the database.

We used Box and Whisker method to plot three graphs of the
latency between the one-for-one and one-for-all methods. The
synchronization time for the one-for-one method can be seen in
Figure 9. The other two figures (Figures 10 and 11) show the syn-
chronization time with the one-for-all method, however, one of
them demonstrates the total latency cost with synchronizing one
WA and the plant location data, the other only demonstrates the
latency cost to synchronize the plant location data. This is split into
two graphs because the user will only need to synchronize the WA
once at device start-up; any further changes in the location of the
PNP requires only the sharing of the scene vector data. Figure 11
therefore is useful for comparing the “time-to-resynchronization”
in the case of a change in the location in one of one or more of the
plant trays.

Figure 9: The latency cost on locating the corresponding
PNP sets with one-for-one method.

8 DISCUSSION
Figure 9 shows the latency times that were generated on synchro-
nizing 1 to 8 PNP sets to the greenhouse under the one-for-one
method. The total time increased linearly with increasing the num-
ber of PNP sets, as expected. There are some outliers, however this
could be due to issues with the HL device itself. We found that since
the synchronize process took a long time, the device got very hot,
and we also observed some frame-rate stuttering in the HL display
when rendering the holograms of the PNP sets. This was observed
when synchronizing more than PNP sets (PN > 3).
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Figure 10: The total latency cost on locating the PNP sets
with synchronizing both WA and plant location data.

Figure 11: The latency cost on locating the PNP sets with
only synchronizing the plant location data.

This could also explain why MS writes in the documentation
that the (on-device) LAT method will sometimes fail and provide
less robust anchor recall than the (cloud-based) ASA method, as
mentioned in Section 2. The highest latency time (PN = 8) reached
40s, and this latency is too high to support natural real-time collabo-
ration. Even in the PN = 1 case, the latency time was approximately
9s. This indicates that the LAT method provided by MS and Unity
has obvious drawbacks for creating multi-user shared experiences
with HL. The size of the WA used in LAT is too large to be trans-
mitted among users with an acceptably low latency.

In contrast, Figure 10 shows a clear improvement over the one-
for-onemethod. The latency time is approximately constant through

synchronizing the different number of PNP sets (from 1 to 8). In
each case, the total latency falls under 12s. There are also two out-
liers when PN = 4 and 5. This could be because the import process
retried fewer times in these two cases. When testing the one-for-all
method, the system did not get stuck or exhibit the stuttering as
seen with the one-for-one method. Since synchronizing the WA
only happens on start-up, in further use the WAs would not be in
the processed again.

Figure 11 shows the time for synchronizing only the the plant
locations (using the lightweight vector approach). This is a useful
direct comparison with the Figure 9 plot representing the one-for-
one method (where the full WA synchronization cost is incurred
each time a plant tray is moved). Note that the latency shown in
Figure 11 are included within Figure 10. The overall latency for
all trials is similarly constant around 0.05s, although there is more
variation in the results. This is to be expected because the latency
time is so small. Again, the reason why this latency is so small is
because of the size of the plant location data is much smaller in this
case—around 200 bytes.

This indicates that after users have done the initial synchro-
nization on system start-up, they could work collaboratively in
real-time under this system.

The OFALL-SE method does have some disadvantages. In partic-
ular, the "reference" WA has a limitation on the size of the offset
distance with which it can be used accurately. MS states this limita-
tion in their official document as:

"Spatial anchors stabilize their coordinate system near the an-
chor’s origin. If you render holograms more than 3 meters from that
origin, those holograms might experience noticeable positional er-
rors in proportion to their distance from that origin due to lever-arm
effects."[Zeller et al. 2019c]

Therefore if a user is more than 3 meters from the reference
WA, the corresponding PNP sets might have the positional errors
throughout HL devices. Thus, the one-for-all method, may be lim-
ited to small greenhouses. This was not a constraint in our test
greenhouse environment, but for other scenarios such as a larger
greenhouse this should be considered and addressed by developers.

9 CONCLUSION
In this paper we describe a new AR system for low-latency asset
tracking and collaboration and examined its performance in the
context of a research greenhouse environment. We combined the
methods of world tracking from the HL device and the marker-
based tracking to track the physical location of the plant tray.

We have also modified the OFALL technique to speed up the
transmission of the plant spatial locations among the users via a cus-
tomized cloud server without using ASA. We have also completed
an experiment which showed that the latency on synchronizing the
spatial locations of the plant with the new OFALL-SE method was
consistently better than the one-for-one method recommended in
the Unity official user manual, and that using this modified method
the sharing of spatial locations in a multi-user scenario could be
operated with sufficiently low latency for real-time collaboration.
This also enable the users who would not like to use ASA to share
the anchors by MS’ LAT method with their own customized cloud
server.
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