
Chapter 7
Critical Challenges for the Visual
Representation of Deep Neural Networks

Kieran Browne, Ben Swift and Henry Gardner

Abstract Artificial neural networks have proved successful in a broad range of
applications over the last decade. However, there remain significant concerns about
their interpretability. Visual representation is one way researchers are attempting to
make sense of these models and their behaviour. The representation of neural net-
works raises questions which cross disciplinary boundaries. This chapter draws on
a growing collection of interdisciplinary scholarship regarding neural networks. We
present six case studies in the visual representation of neural networks and exam-
ine the particular representational challenges posed by these algorithms. Finally we
summarise the ideas raised in the case studies as a set of takeaways for researchers
engaging in this area.

7.1 Introduction

The internal patterns and processes of artificial neural networks are notoriously dif-
ficult to interpret. The advent of deep neural networks has heightened this challenge
and rendered many existing interpretive methods obsolete. This has prompted new
research into methods for interpreting neural networks. One of the most fruitful areas
of this research, and the focus of the present chapter, is visual representation. Cen-
tral to this research is the concern that neural networks are black boxes. Growing
awareness and criticism of machine learning in public discourse has transformed
the explanation of these algorithms into a social and political as well as technical
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concern. Interrogating the black box is a compound problem. Its constituent parts
cross disciplinary boundaries to raise questions of engineering, epistemology, aes-
thetics and semantics. We will argue that it is valuable for researchers aiming to
explain neural networks through visual representation to become familiar with the
interdisciplinary critical scholarship on this topic. We begin this chapter with a dis-
cussion of the black box problem which draws upon this research. We then situate
the visual representation of deep neural networks in data visualisation and inter-
face theory, and discuss the specific challenges it poses. In Sect. 7.2 we outline the
diagrammatic representations favoured by researchers prior to 2006 and offer an
explanation for their rapid obsolescence following the rise of deep neural networks.
In Sect. 7.3 we present six diverse case studies in contemporary visual representation
of neural networks. The case studies come from research, industry and individual
makers. They have been selected for their potential to highlight critical challenges
rather than their citation metrics. In the final section we summarise the ideas raised
in the case studies as a list of takeaways for students or researchers engaging in this
area.

7.1.1 The Black Box Problem

The term “black box” describes a system with clearly observable inputs and outputs,
but with inscrutable internal processes. Neural networks are considered black boxes
not because we cannot see inside as such; the relationship between input and output
is observable but unintelligible. An apparently strong relationship in one layer of the
network may be cancelled out or inverted in the next or simply diluted by count-
less other smaller relations. Like many machine learning (ML) techniques, neural
networks trade interpretability for predictive power [7].

The black box problem is an ongoing concern for researchers and a growing
concern for institutions and individuals who use trained models but are estranged
from their development. If it is difficult to understand how neural networks make
decisions, then it becomes difficult to trust the decisions they make.

The black box problem has been cited many times as a barrier to the adoption of
neural networks [6, 16, 42]. This concern has proved unwarranted as the successes
of deep neural networks in countless disparate fields have led to pragmatic adoption
despite difficulties explaining their behaviour. Over the past decade deep neural
networks have received massive investment from research councils, industry and
government and have been applied to problems as broad-ranging as translation [2],
gameplay [28], fine art [17], stock trading [25] and object recognition [24].

Despite some early claims to have solved the black box problem [6], concern
for explainability remains. Indeed the black box has become a central metaphor for
questioning how andwhether neural networks can be explained. Notably, researchers
have made attempts at “illuminating” [32], “coloring” [16], “opening” [39, 42] and
“greying” [43] black boxes.

Since 2006, the use of deep architectures, i.e. neural networks of many layers, has
become prevalent [5]. The comparatively tiny neural networks used by researchers
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in the 90s have been replaced by massively deep, massively multivariate networks.
AlexNet [24], for example, contains 650,000 neurons and 60 million parameters.
This enormous growth has rendered many existing modes of visual representation
ineffective.

The invention of new types of networks has created additional challenges for
explainability. Much of the recent success of neural networks has been made with
alternative architectures such as convolutional neural networks and long short term
memory (LSTM) networks [35]. These models augment the standard feedforward
neural network with structures that enable new kinds of modelling but introduce
additional behavioural complexities.

7.1.2 Interdisciplinarity

As a potentially transformative technology, ML has consequences which reach far
beyond computer science. As a novel way of representing knowledge ML raises
questions for epistemology [41]. Because ML is subject to human biases, anti-
discrimination law must be reformed to account for it [3]. As a technology driv-
ing socially consequential mechanisms such as news trends and credit scores, the
opacity of ML becomes a sociological concern [13]. There are more examples of
interdisciplinary research into ML than can be enumerated here. In each case, the
authors describe the critical challenges of machine learning in the nomenclature of
their field. This seemingly disparate scholarship provides a useful lens with which
to understand ML itself and its effects in the world. In Sect. 7.3 there are a number
of cases where interdisciplinary research is leveraged to make sense of some of the
particular critical challenges posed by the visual representation of neural networks.

7.2 Historical Precedents

The defining trope of pre-2006 neural network visualisation was the structure of the
network itself. This was most commonly represented as a graph of nodes and edges
arranged in neat layers left-to-right or bottom-to-top (Figs. 7.1 and 7.2). In these, the
network’s topology is central to the representation.

Craven and Shavlik’s 1992 review paper [14] surveyed the contemporary cutting
edge of artificial neural network visualisation.Notable amongst thesewere theHinton
and Bond diagrams, which have a structural focus. Curiously the authors criticise the
Hinton diagram for not showing the network’s “topology” despite its elements being
arranged in layers that mimicked the network’s structure. Although the Hinton and
Bond diagrams can theoretically include any number of inputs, they are practically
uninterpretable for large networks [42].

What followed was a general convergence to and then refinement of a particular
representation which centred around a structural depiction of the network. We call
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Fig. 7.1 Neural interpretation diagram based on S. L. Özesmi and U. Özesmi (1999) [33] — the
visual representation mirrors the structure of the schematic representation introduced by Rosenblatt
(1962) [34]. The thickness of each edge is relative to the absolute value of the synapse weight. Blue
edges represent positive weights and red edges represent negative weights. Source code for image
available at [9]

Fig. 7.2 Diagram for a large spam-classifier neural network based on Tzeng and Ma (2005) [42].
The size of nodes indicates their relative importance in identifying spam. Node colour is used to
indicate the mean and standard deviation of a given node. Source code for image available at [10]

this type of image a “neural interpretation diagram” (NID) borrowing from the name
used by S. L. Özesmi and Özesmi (1999) [33]. In NIDs, neurons are represented
as dots or circles, and synapses are represented as lines with thickness and colour
indicating value. Variations on this theme can also be seen in the work of other
researchers [32, 33, 38, 42]. In their 2005 paper, Tzeng and Ma cite the Hinton and
Bond diagrams as precedents to their work and note that these had failed to scale
to larger networks. They go on to apply their take on the NID to a network with
8300 synapses. Although it doesn’t appear to be the authors’ intent, the resulting
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image demonstrates that NIDs share a similar scaling problem to Hinton and Bond
diagrams. In the multitude of criss-crossing lines it is impossible to make sense of
individual synapse values (Fig. 7.2).

The NID and its variants went out of fashion because they failed to scale to the
very large, very deep networks that became the focus of research after 2006. More
significantly however, these diagrams fail to target the core of the problem. Neural
networks are not black boxes because we cannot see inside at all; the value of any
weight, bias or activation can be easily accessed. It is clear that seeing the network
does not in itself create understanding. The real challenge for explaining neural
networks is untangling meaningful relationships from the multitude of connections.

By meaningful, we mean relating to representations for which people have con-
cepts. It is not useful to explain how a pixel value relates to steering instructions. For
self-driving cars we want our explanations in terms of semitrailers, cliffs and pedes-
trians. Because deep neural networks produce their own intermediate representations
we require means of mapping these back to meaningful concepts and testing how
robust these mappings are.

Additionally it is not possible to explain the behaviour of a network by its structure
as structure does not dictate behaviour; neural networks are universal approximators
[21]. Two structurally identical networkswill approximate different behaviours given
different data. A neural network’s behaviour is latent in the dataset, not the network.

7.3 Case Studies

In this section we explore contemporary developments in visual representation of
neural networks, examining six case studies drawn from research, industry and indi-
viduals. These cases have been selected for their potential to highlight critical chal-
lenges of visually representing neural networks.

7.3.1 AI Brain Scans

The AI Brain Scans (2016-ongoing) [19], are a collection of visualisations by Matt
Fyles of Graphcore. Initially referred to as “large scale directed graph visualizations”
[20], the images were dubbed “brain scans” in a report by Wired in early 2017 and
the title stuck [12].

The AI Brain Scans visualise the edges and nodes of a neural network’s com-
putational graph. They are produced with Graphcore’s proprietary ML framework,
Poplar, and the open source graph visualisation software, Gephi [4], which is used
primarily for social and biological network analysis. The “brain scans” are structural
like the NID, but rather than representing the network’s topology they represent the
graph of computations required to train and run a neural network. Unlike other neural
network graph visualisations such as those produced by TensorFlow’s TensorBoard
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[40], the “brain scans” do not abstract nodes into higher dimensional representa-
tions, namely tensors. The results are beautiful, but enigmatic; see [12] for images.
The network is presented in its vast complexity, often containing millions of nodes
and edges. These are unidentifiable in the emergent global form, making the image
appear more photographic than diagrammatic. The edges of the graph are all but
noise and appear as a fine grain, evocative of a micrograph.

The graph layout demonstrates patterns of growth similar to bacteria on a petri
dish. Force-directed layout is used to arrange the nodes, which produces growth-like
properties. There are a multitude of ways to lay out a graph visualisation, and no
single “correct” way to do so. In this case as in any, the choice to use one layout over
another is an aesthetic judgement. The “brain scans” revel in the complexity of deep
neural networks. No longer are nodes arranged in even rows and parallel layers with
neatly criss-crossing edges. Rather, the sub-structures grow radially but distort due
to competition for space.

The “brain scans” appear to be a rejection of structure and clarity of contemporary
visualisationwhich seeks to render phenomena beyond the scale of human perception
accessible to our senses. Manovich (2002) [27] calls this the “anti-sublime ideal”.
Contrary to this, the AI Brain Scans are deeply sublime, they are an image of the
complexity of contemporary neural networks, whose internal patterns and processes,
as we have seen, are at least partially unknowable. By leveraging a biomorphic
representation they present a metaphor for artificial neural networks that is complex,
esoteric and uncanny.

This is not to say that the “brain scans” do not help us to understand neural
networks. It is possible for example to identify convolutional and fully connected
layers in the emergent structures of the images (see [19]). Importantly the AI Brain
Scans help us to think about neural networks because they offer a visual metaphor
that actually represents their complexity and obscurity rather than representing an
incomplete or inconclusive visual explanation in false clarity.

7.3.2 Optimal Stimulus Images

One of the key strengths of deep neural networks over shallow ones is their capac-
ity to build abstraction over successive layers [5]. Accordingly, one of the greatest
challenges for explaining the behaviour of neural networks is interpreting these inter-
mediate representations learned by a network and encoded in hidden layers.

Because deep neural networks are often trained on low-level representations (like
pixels or characters) which have little semantic value, the use of numerical expla-
nations such as rule extraction are undermined. Le (2013) [26] demonstrates the
use of numerical optimisation to find the optimal stimulus for a given neuron in an
unsupervised neural network. The author includes three instances of interpretable
high-level features discovered with this method. This suggests that neural networks
have the capacity to discover salient features in the pursuit of higher goals, evenwhen
these are not encoded as part of a classification. Le uses gradient descent in training,
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Fig. 7.3 Optimal stimulus of interpretable neuron from Le (2013) [26]. (Copyright 2013 IEEE,
reprinted by permission of IEEE)

keeping the weights and biases constant in order to to optimise the activation of a
given neuron with respect to the input variable. Because the resulting optimal input
data is in pixel space, it can be rendered directly as an image. Figure7.3 is a visuali-
sation created in this way that clearly contains a human face.

The power of this and similar methods is that they accumulate the information
which encodes this representation and is distributed throughout preceding layers. In
doing so, they shift the focus of explanation from network weights with no inherent
semantic value to distributed high-level features.

This kind of visualisation is extraordinarily expressive. At later layers in the net-
work it theoretically makes it possible to simplify the tangled mess of relations
encoded within. Used in combination with a technique such as rule extraction, it
allows us to give coefficients at the level of meaningful concepts. However, this also
requires that researchers engage critically with semantics. Tun (2015) [41] prob-
lematised the epistemic status of ML, noting that statistical learning is a form of
inductive inference. It is therefore subject to the problem of induction. This idea can
help researchers to better understand the nature of the semantics encoded in neural
networks.
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Figure7.3 shows a blurry image of a human facewhich is the optimal input for one
of the network’s neurons. The face is clearly white and clearly male. Its eyes contrast
strongly with the background. Its lips are rosy and there is a hint of stubble on the
upper lip. The clarity with which the face can be seen in the image led the author
to claim that the tested neuron has learned “the concept of faces” [26]. However,
with the problem of induction in mind, this claim becomes less certain. The image
appears to represent the basic notion of a face because whiteness and maleness are
unmarked categories in English. We understand the image through the lens of our
preexisting linguistic categories. If the pictured face were feminine, or non-white,
or that of a child we would be be less inclined to assume it represents the general
concept of faces.

The optimal stimulus is an important datum but it represents an archetype not a
category. Categories are defined as much by what is excluded as what is included.
It is possible that this neuron activates strongly only for faces that are also white,
adult and male, or even only to those that resemble the man pictured. Alternatively
this really could be the generic category of “face”, its features representing only an
overrepresentation of white adult males in the dataset. It is not possible to know
how far this representation of a face will stretch without experimentation. To test the
equality of meaning between this neuron and the Anglophonic definition of a face,
we need to measure how quickly the activation declines as correlates of femaleness,
age and ethnicity change.

The optimal stimulus images and other methods that visualise the internal seman-
tics of neural networks are crucial to our understanding of these systems. Nonethe-
less, it is necessary to take a critical approach when dealing with notions as slippery
as meaning. It is valuable for researchers aiming to represent semantic encodings
in neural networks to become familiar with the critical issues of semantics from
philosophy and linguistics.

7.3.3 Interpretable, Long-Range LSTM Cells

Semantic relationships in recurrent neural networks are explored in Karpathy, John-
son, and Fei-Fei (2015) [23]. The authors visualise the activation of a particular
neuron across a passage of text generated by an LSTM network to look for inter-
pretable relationships between the neuron’s activation and the composed content.
Their visualisation highlights each character with a colour mapped to the activation
of a given neuron and looks for interpretable patterns.

InFig. 7.4 this techniquewas applied to anLSTMtrainedonLeoTolstoy’sWarand
Peace. Two interpretable neurons are shown. The first can be interpreted as relating to
the carriage returnwhichmust be used approximately every70 characters. The second
turns on inside quotes, allowing the network to remember to close them. Interpreting
meaningful relationships in the content of the prose itself was not achieved. It is
possible that an appropriately comparative string of characters that would reveal the
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Fig. 7.4 Visualisation of interpretable activations of neurons from LSTM network trained onWar
andPeace based onKarpathy, Johnson, and Fei-Fei (2015) [23]. Text colour represents the activation
of the interpretable neuron tanh(c), where blue is positive and red is negative. Source code for image
available at [8]

pattern simply did not emerge. It is also possible that the relationships that produce
prose are more complex than the viewer can discern.

Unlike the optimal stimulus images, these visualisations engage with a softer
notion of meaning. Here, meaning emerges from the consistent relation between the
neuron activation and the output. The semantic meaning of a cell is inferred by the
viewer in the context of real data. The visualisation exists only to service comparison.

The insight of this visualisation is to integrate neuron activation with the data
it consumes or produces. By placing the abstract representation of activations in
context, the viewer can discover patterns without the author’s curation (Fig.7.5).

Fig. 7.5 “Fooling images” produce >99%confidence predictions but are unrecognisable to humans.
This process and the notion of a fooling image are introduced in Nguyen, Yosinski, and Clune
(2015) [31]. The examples above were produced using a script operating on Felix Andrew’s CPPN
clojurescript implementation [1]. The source code is available at [11]
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7.3.4 Fooling Images

The “fooling images” of Nguyen, Yosinski, and Clune (2015) [31] are a collection
of images produced with genetic algorithms that are unrecognisable to humans but
produce high confidence predictions from state-of-the-art deep neural networks. The
works expose a significant divide between human and computer vision. Nguyen,
Yosinski, and Clune (2015) [31] introduce two methods for generating “fooling
images” based on evolutionary algorithms (EAs). We will focus on the second
form which uses Compositional Pattern Producing Networks (CPPNs) [37] to breed
images which optimise for a given fitness function, in this case a single classification
of a convolutional neural network trainedon ImageNet. In order to simultaneously tar-
get all 1000 classes of ImageNet the researchers used the multi-dimensional archive
of phenotypic elites algorithm, but noted that results were unaffected for a simpler
EA.

The “fooling images”, unlike the previous case studies, contain no image of the
network’s weights, structure, training set or indeed any data about the network at
all. Despite this they do foster understanding. The images probe the network with
targeted experiments to seek out unusual and revelatory behaviour.

The “fooling images” are critical cases that force the viewer to reconsider assump-
tions about the network. The researchers found that test subjects were able to reason
about why an image was classified a certain way after its class was revealed to them.
It is clear however, that global coherence does not affect the network’s prediction.
Instead, simply having low level features from the class seems to be sufficient to
predict a category with high certainty.

The “fooling images” show very clearly that despite high scores on the ImageNet
benchmark, neural networks do not “see” in the same way that humans do. It is
natural to assume when we see a neural network working correctly that the network
perceives and reasons as we do. Critical cases such as the “fooling images” reveal
glimpses of the semantic mappings that the network has learned.

The “fooling images” are powerful because they break our natural assumption that
performing a complex task with low error means thinking like a human. They desta-
bilise the default anthropocentric notion of seeing. This semantic non-equivalence is
likely a property of neural networks in general and gives grounds for scepticism of
any neural network that appears to be acting like a person.

7.3.5 DeepDream

DeepDream is a method for visualising the internal representations of neural net-
works developed by Mordvintsev, Tyka, and Olah (2015) [30]. It is also likely the
best known neural network visualisation, having reached viral status.

DeepDream approaches visualisationwith the same basic aim as the optimal stim-
ulus images of Le (2013) [26]; to visualise the semantic representations encoded by
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Fig. 7.6 Image produced by DeepDream — by Mordvintsev, Tyka, and Olah (2015) [30]. Used
under Creative Commons Attribution 4.0 International: https://creativecommons.org/licenses/by/
4.0/legalcode

Fig. 7.7 DeepDream’s compound animals — by Mordvintsev, Tyka, and Olah (2015) [30]. Used
under Creative Commons Attribution 4.0 International: https://creativecommons.org/licenses/by/
4.0/legalcode

a network. The algorithm was modified from the research of Simonyan, Vedaldi, and
Zisserman (2014) [36] and others but provides two notable variations on existing
work. First, instead of maximising a single neuron or class representation, Deep-
Dream reinforces whatever is activating the highest to begin with. In doing so, it can
hold the representations of hundreds of classes in a single image. These need not be
distinct or complete and morph seamlessly from one to another (Fig. 7.7). Second,
DeepDream applies its activations at different “octaves” creating a visual repetition
of self-similar forms at many scales (Fig. 7.6).

In describing their work the authors make use of the language of conscious human
experience. The networks are said to be “dreaming” perhaps in reference to the Phillip
K. Dick novel. Later, the process and its emergent images are described as being like
children watching clouds [29].
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DeepDream’s emergent structures bear similarities to the drawings ofMCEscher.
Labyrinths grow out of thin air and form strange loops or seemingly infinite layers.
Like Escher’s tessellation works, representations morph from one to another, or
change in scale. The eye can trace a path around the image and end up back where
it started, or in a vastly different representation or a different scale. Representations
morph from one to another but at every stage appear locally coherent.

The key point here is that like Escher’s work, the DeepDream images are locally
coherent but are globally incoherent. The images support the implication of the
“fooling images”, that semantic representation in neural networks does not depend
on the global form.

The authors are careful to encourage the spread of their work. Alongside the
published source code, readers are encouraged to make their own and share them
with the hashtag #deepdream. It is also clear that the authors are cognisant of wider
cultural implications of the images.

[we] wonder whether neural networks could become a tool for artists — a new way to remix
visual concepts — or perhaps even shed a little light on the roots of the creative process in
general. [29]

Unlike the algorithms it was based on, which visualise the representation of a
single class or neuron, DeepDream combines any number of representations in the
image. Because of this it is not possible to learn about particular features of a given
class, or to understand how features relate to one another. DeepDream is arguably not
a technical image but a cultural one. It is a picture of the strangeness and inconsistency
of neural networks. Although it uses the language of conscious human experience it
presents an uncanny image of neural networks that bears little resemblance to dreams
or seeing.

7.3.6 Pix2Pix and FaceApp

Pix2pix (P2P) by Christopher Hesse is an online interface to a neural network that
converts images of one kind to another. Thework is an implementation of the Pix2Pix
neural network designed by Isola et al. (2016) [22]. The interface allows for user-
driven exploration of the trained network.

P2P is a behavioural visualisation like the “fooling images” in the sense that it
does not directly represent information about the network itself but rather facilitates
comparison between input and output. Unlike the “fooling images”, it does not pro-
vide a curated list of inputs. In fact the initial state provided by the demo is rather
unremarkable. It is the interaction here that is most central to the work’s explanatory
power. Users, over successive attempts, can test the limits of the network’s semantics.

Figure7.8 shows a P2P demo which converts an outline drawing of a cat to a
photographic image based on that outline. With their outline, the user can explore
representations. Users can follow their own line of inquiry to learn about the network.
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Fig. 7.8 Schematic drawing of Christopher Hesse’s edges2cats interface https://affinelayer.com/
pixsrv/ Users are afforded simple drawing tools to produce a black and white line drawing. This
is then processed by a server that uses a pix2pix network to produce an image with photographic
qualities, inferring form, colour and texture from the line drawing

Can the cat have more than two eyes? How is a body distinguished from a head?
What happens if I don’t draw a cat at all?

The interface allows the user to intelligently explore the space of possibility of the
network. Though the interface enables individual sense-making, it is on social media
that the images have been most successfully interpreted. On Twitter and other social
networks curious, bizarre and revelatory images are selected for. Images that create
the most interest are transmitted the farthest. In comments users share discoveries
and attempt to make sense of the system collectively.

A similar pattern of collective sense-making can be seen in the response to
FaceApp [18]. The app uses neural networks to transform a face in intelligent ways.
It provides filters that make the subject smile, change gender or age, and increase
“attractiveness”. Again, the interface allowed users to experiment with the network
and seek out patterns, and again themost successful sense-making happened on social
networks, which allow revelatory behaviours to spread quickly. Users of social net-
works quickly discovered that the filter intended to make users more attractive was
turning skin white [15].

By allowing the network to infer its own semantics from the training set, it falsely
equated beauty with white skin. With this unfortunate pattern in mind, it is possible
to post-rationalise the existence of this bias in the training data. Datasets of this kind
are labelled by people and thus imbibe the biases of the people who create them.
Neural networks are not immune to this kind of bias, in fact it is almost impossible
to prevent it. As universal approximators, neural networks make use of any salient
patterns in data, including cultural patterns. If the application of labels such as beauty
are correlated with whiteness, the network will learn to reproduce that pattern.

How is it possible that a powerful pattern of cultural bias that is completely obvious
to users was invisible to those who developed the network? This pattern surprised
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FaceApp because the design of a network does not produce the behaviour, the data
does. Cultural biases are easily learned and repeated by neural networks when we
take data uncritically; as an objective representation of what is.

In contrast, despite being completely estranged from the neurons and synapses of
the network itself, and without requisite knowledge of how neural networks function
or learn, the users of social networks were able to discover and make sense of this
pattern.

Interfaces that enable exploration and socially mediated interpretation are a pow-
erful explanatory method. There is an opportunity here for researchers to design for
collective sense-making, to make it easy for users to share curious behaviours of
networks and facilitate collective interpretation.

7.4 Summary

In this section, we summarise the ideas raised in the case studies as a list of takeaways
for researchers engaging in this area.

7.4.1 Structure Does Not Explain Behaviour

The structure of a neural network does not explain its behaviour. The shape of a
neural network is a design consideration, it has an effect on learning, but not learned
behaviour. Instead, behaviour is latent in the training data and approximated by the
network.

It is not true that structure is irrelevant. Thinking about structure can help
researchers to design better networks, increase capacity for abstraction and restrict
overfitting. But these choices do not explain a network’s output.

In comparison, it is demonstrable that users can infer patterns in the network
without any knowledge of the network itself or even a technical understanding of how
neural networks function. Simply presenting inputs alongside outputs for comparison
can allow viewers to spot patterns.

7.4.2 We Understand Better When Things Break

We learn more about how neural networks work when they fail. When neural net-
works do what we expect, it’s easy to assume that they are thinking like a person. In
the absence of a usefulmetaphor for how neural networks thinkwe imagine ourselves
performing the task. Given the extraordinary results achieved in benchmarks such
as ImageNet, where neural networks have equalled or surpassed human accuracy,
we tend to assume that the network uses the same features to identify images as
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we do. Indeed, it is difficult to comprehend how a system could achieve human or
superhuman ability for a given task without thinking like a human. However, critical
cases like the “fooling images” break this assumption.

Examples that break with expectations force the viewer to question their under-
standing of the system. By comparing input and output, the viewer can reason about
which features produced the result and form a new theory for how predictions are
made.

7.4.3 Interfaces for Exploration

Interfaces such as Pix2Pix and FaceApp allow users to learn about a network by
experimenting with it. These interfaces allow users to control input easily and see
output immediately. This is a powerful pattern because it allows users to seek out
critical cases. Users are able to continually adjust their mental model of how the
network behaves by testing their hypotheses immediately.

7.4.4 We Understand Better Together

The visual representations we have discussed, if created for a user at all, have been
designed for individuals. Many of these, notably DeepDream, Pix2Pix and FaceApp,
have been interpreted significantly on social media. Social networks enable collec-
tive sense-making, inspiring users to try similar things and add their results to the
conversation. In comments users put into words their questions and theories about
the system, where they can be discussed with others. Social networks also select for
interesting or surprising content. This allows critical cases to be spread further.

It is possible to design for collective sense-making in neural network interfaces.
An interface for collective sense-making might allow users to bookmark and share
surprising behaviours and provide a place for users to discuss the content, share
explanations and theories. It could also recommend recently viewed and commented
bookmarks to encourage users to engage with one another.

7.5 Conclusion

The black box problem remains an ongoing challenge for researchers. Visual rep-
resentation has proved to be a powerful tool with which to manage complexity
and an important means of interpreting neural networks. Researchers in this space
are making progress in extracting semantic encodings, developing interactive inter-
faces, discovering critical cases and negotiating the cultural conception of neural
networks, however there is still much work to be done. The interdisciplinary interest
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in ML underscores the consequences of this technology beyond computer science
and the importance of finding explanatory methods. The visual representation of
neural networks crosses disciplinary boundaries. In this chapter we have outlined
some emerging critical challenges for this research and demonstrated that they can
be understood in the context of existing scholarship from disciplines considered far
removed from computer science. Solving the black box problem will require critical
as well as technical engagement with the neural network.
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