
Disruption and creativity in live coding
Ushini Attanayake∗, Ben Swift∗, Henry Gardner∗ and Andrew Sorensen†

∗Research School of Computer Science
Australian National University, Canberra, ACT 2600, Australia
Email: {ushini.attanayake,henry.gardner,ben.swift}@anu.edu.au

†MOSO Corporation, Launceston, Tasmania, Australia
Email: andrew@moso.com.au

Abstract—Live coding is an artistic performance practice
where computer music and graphics are created, displayed and
manipulated in front of a live audience together with projections
of the (predominantly text based) computer code. Although
the pressures of such performance practices are considerable,
until now only familiar programming aids (for example syntax
highlighting and textual overlays) have been used to assist live
coders. In this paper we integrate an intelligent agent into a live
coding system and examine how that agent performed in two
contrasting modes of operation—as a recommender, where on
request the the agent would generate (but not execute) domain-
appropriate code transformations in the performer’s text editor,
and as a disruptor, where the agent generated and immediately
executed changes to the code and the streaming music being
performed. A within-subjects study of six live coders suggested
that participants of the study preferred the agent’s disruptive
mode as a mechanism for enhancing the creativity of their live
coding performances.

Index Terms—Intelligent agents, Interaction paradigms, Mu-
sical instrument digital interfaces, Software support tools

I. INTRODUCTION

Live coding is an exciting and risky form of performative,
creative, end-user programming (EUP) [1] where computer
music and graphics are created, manipulated and displayed
on screens in front of a live audience. In a typical perfor-
mance, a live coder starts from a blank text editor window
and incrementally writes and evaluates code. When the live
coder evaluates a block of code, any changes take immediate
effect, creating and manipulating the music, visuals or robotic
instruments during the performance. Although musicians have
long been recognised as potential EUPs [2], [3], the real-
time, performative aspect of live coding places demands on
the programmer which are unlike other EUP contexts [4],
particularly the challenge of creating new and interesting
musical ideas in the moment of performance.

Live coders typically use text completion and syntax high-
lighting facilities of modern text editors to efficiently write
clear code, both for the audience and themselves. In addition,
domain-specific visual annotations and adornments have been
used in some cases, for example overlays which blink in time
with the musical output [5]–[9]). This work has shown that
these visual adornments can help to better expose the structure
and temporal execution of live coding performances.

There has been a long-standing interest in the development
of intelligent agents as collaborators in creative live musical
performance [10]–[13]. However, in most cases the musician
and the intelligent agent collaborate and interact in the sonic
domain, i.e. the musical output of human and agent are mixed
together, with both being able to listen and respond to each
other. Comparatively few systems explore the possibility of an
intelligent agent which interacts with the instrument directly,
although examples of this exist in the NIME community [14],
[15]. The nature of live coding, with the live coder as an
EUP building and modifying their code (i.e. their instrument)
during a performance, provides an opportunity to explore the
possibility of intelligent agents that are able to anticipate and
recommend new code blocks to be integrated into live coding
performances in real time.

In this paper we report on the development and evaluation of
such a system. Using a Markov-chain-based intelligent agent
in the context of the Extempore live coding environment [16],
with text editor support in the form of a custom Visual
Studio Code (VS Code) extension, the agent recommends
(and in some settings, executes) code modifications during
a live coding performance. We have evaluated the operation
of this system in two contrasting live coding settings: one
where the agent recommends modifications to running code
that the performer is able to accept or not and one where
the agent disrupts a live coding performance by immediately
executing its recommendations. Both versions of this tool
have been evaluated in a within-subjects study involving six
live coders. Somewhat surprisingly, the majority of these live
coders reported to have preferred the disruptive agent over the
recommending agent in improving their creative ideation.

II. RELATED WORK

The challenge of ideation is not unique to live coding—the
balance between structure and surprise is an important factor
in musical improvisation more generally [17], [18]. In jazz, for
example, Coltrane and Davis deliberately lift themselves out of
creative stagnation by introducing ‘disruptions and incremental
re-orientations’ into their performance [19]. In computer mu-
sic, agents which embody the most invasive interactions come
under the class of the accompanying agents or ‘colleagues’
[10]. Such agents generate music independently of a live
musician as a virtual accompanist.978-1-7281-6901-9/20/$31.00 ©2020 Crown

For example, Voyager [11] is a multi-agent system that lis-
tens to a musician, learns from them and improvises alongside
that musician; in such a system the musician has no direct
control in decision-making over the music produced by the
agent. Examples where the musician has more control over
the sonic environment are Cypher [12] and Band-out-of-box
(B.O.B) [13]. Though the agent in B.O.B makes changes
directly in the sonic space, the musician and the agent interact
on a call-and-response basis, giving the musician more control
over the trajectory of the performance since their output does
not necessarily overlap with the agent. Cypher not only allows
the musician to control the stream of MIDI data fed into
its ‘listening’ component, it also makes the mapping of data
between its ‘listening’ and ‘playing’ components configurable.

A less invasive form of interaction with computer music
instruments is found in Martin et al.’s work where an agent
collaborates with a group of musicians by adjusting the
interfaces available to them [14]. In this work, the musicians
used touch-screen interfaces whose appearance and musical
scale could be modified by an external agent when that agent
felt it to be appropriate. That paper studied versions of the
agent that either mandated or recommended interface changes
to the group of collaborating musicians.

As discussed in the introduction, live coding is a high
pressure performance art where computer code is written in
front of a live audience to generate and modify music, visual
media and even robotic instruments on the fly. Once a block
of code is evaluated in an editor, it is immediately compiled
and scheduled for execution and it is at this stage that the
live coders and the audience hear the sonified effects of
that code. Unsurprisingly, the high-pressure setting of a live
performance has seen live coders commit large sections of
their performance to memory and resort to using presets [20],
[21]. Some live coders even admit to “rarely having new ideas
during a performance” [22]. Well rehearsed, pre-written code
may lead to a more polished performance, but is at odds with
the improvisational experimentation which the “liveness” of
live coding so greatly encourages.

In spite of the active development of code annotations to
assist with the comprehension of live coding performances
in real time [5]–[9], there does not seem to have been a
systematic consideration and evaluation of the use of agents
in live coding until the present time. It is standard practice
in live coding to write your generative algorithms during the
performance and if an agent-based model were to run in the
background, it would need to be efficient enough to keep
up with the real-time demands of the performance [23]. The
complexity of common agent-based models, such as machine
learning, may restrict the number of concurrent processes
a live coder can run, thus affecting their popularity in the
live coding community. Therefore, the trade-off between the
sophistication and efficiency of an agent model is particularly
important to consider in this context. The use of agents that
can predict alternate versions of a program in a live coding
system has been termed “tactically predictive liveness” and is
the fifth level of liveness identified by Tanimoto [24], [25].

;; original code
(:> A 3 0 (play syn1 @1 60 dur)

'(60 63 65 67))

;; reverse
(:> A 3 0 (play syn1 @1 60 dur)

(reverse '(60 63 65 67)))

;; invert
(:> A 3 0 (play syn1 @1 60 dur)

'(60 57 55 53))

;; thin
(:> A 3 0 (play syn1 @1 60 dur)

'(60 67))

;; repeat
(:> A 3 0 (play syn1 @1 60 dur)

'(60 63 65 63 65 67))

;; rotate
(:> A 3 0 (play syn1 @1 60 dur)

(rotate '(60 63 65 67)
(random '(-3 -1))))

Fig. 1. Example of an Extempore language pattern and its transformation
under the operations ‘reverse’, ‘inverse’, ‘thin’, ‘repeat’, ‘rotate’. In the
“recommendation” version of our agent, the top line of code would be
overwritten by the one of the transformed lines return from the agent.

III. AGENT DESCRIPTION

The agent developed in this work has been inspired by the
incremental re-orientations Davis and Coltrane apply in jazz
improvisation. It recognises certain characteristic patterns in
the Extempore language that are written in terms of lists of
midi pitches. The agent simulates a re-orientation by applying
transformations (such as “rotation” or “inversion”) to the
pitch lists that appear to be incremental but distinct from the
original code. We illustrate these transformations with respect
to Figure 1 where the first line of code sets up a pattern for
the midi pitch list '(60 63 65) representing the notes C4,
D#4 and F4. When executed, the pattern named ‘A’ plays the
list of pitches every ‘3’ beats through the ‘syn1’ synthesizer
at volume ‘60’; each note having a standard duration of ‘dur’.
The reverse transformation of this pattern has the pitches
played in the reverse sequence and this is achieved with the
‘reverse’ keyword.

The Extempore pattern language has capabilities for spec-
ifying harmony and variation in rhythm by nesting pitches
within the list and using underscores for rests—this compact
representation allows for quick implementation and modifica-
tion in a live performance setting.

The agent is represented by a time-homogeneous, first-
order Markov Chain model [26]. Each state of the Markov
Chain represents a transformation that can be applied to an

Fig. 2. Recommendation interaction

Extempore pattern pitch list. In addition to ‘reverse’ (Fig. 1),
the agent has four other functions; a) ‘Invert’, which replaces
an increasing interval between adjacent pitches with a de-
creasing one and vice versa, b) ‘Thin’, which removes a
random number of pitches from the list, c) ‘Repeat’, repeats
a subset of the pitches in the list, d) ‘Rotate’, moves a
random number of pitches from the beginning of the list to
the back in a wrap-around fashion. In general, suggestive or
‘critiquing’ tools are designed based on a set of functions
which characterize a specific domain [27]. We limit our agent’s
capabilities to this specific set of functions; in the domain
of music, these functions capture commonly used phrasal
transformations [28], making them relevant to a live coder
as an EUP.

For a given pattern, the agent stores the previous function
it applied and transitions to a new function choice using
a probability matrix, the values of which were influenced
by music theory and further tuned upon testing within the
development team.

A. Recommendation or Disruption

Once a live coder has written a pattern in their editor,
they can use hot keys (Ctr+X) to request a modification to
it from the agent. Upon the coder’s request, the VS Code
editor extension would momentarily highlight the pattern
before sending it to the agent via a TCP connection. In the
recommendation mode of operation, this triggered the agent to
apply a transformation to the pattern’s pitch list. The modified
pattern was sent back to the editor extension which would
overwrite the coder’s original pattern. At this stage, the live
coder could either choose to a) continue modifying the pattern
in the editor, b) evaluate the pattern or c) request another
change from the agent. In scenario a) the live coder may
choose to add rests to the pitch list the agent generated before
using Ctr+Enter to evaluate the pattern. In scenario b), the
live coder would use Ctr+Enter to evaluate the agent’s pattern
without making any changes, while in scenario c), the live
coder would use Ctr+X to request another change to that same
pattern from the agent. This mode of operation is illustrated
in Figure 2 .

Fig. 3. Disruptive interaction

In disruption mode, once the agent returned the modified
pattern, the editor extension directly evaluated and sonified the
modified pattern by sending it to the Extempore compiler. In
doing this, the live coder could not see the modification the
agent made and their original pattern remained unchanged in
the text editor. Though the live coder requested a modification
and therefore anticipated a change from the agent, the pattern
the agent scheduled was unknown to the liver coder. Therefore,
the agent was capable of significantly disrupting the trajectory
of the performance. The live coder was able to stop the
agent’s modification from sounding, without stopping any
other patterns which were running at the time. Unlike the
recommendation mode, the disruption mode did not allow the
live coder to modify the pattern generated by the agent, since
the code for the pattern did not appear in the editor. This mode
of operation is illustrated in Figure 3.

IV. EXPERIMENT

We recruited six participants with varying levels of experi-
ence as live coders for our experiment. Each participant was
asked to perform three improvisational live coding sessions,
each session had the agent interacting in one of three degrees
of invasion: A “no agent” condition was used as a tutorial and
control session and was always undertaken first. Subsequently,
the recommendation and disruptive conditions of our agent
were experienced in random order for each participant. In each
session, participants were told that they could improvise as
long as they wanted to up to a cut-off time of 30 minutes
(session times ranged from 14 to 30 minutes with six of
the 18 sessions lasting for the full 30 minutes). Although
there was not a substantial live audience for these sessions,
the first author of this paper did their best to appear as
an active audience member to put some additional pressure
onto the participants. Each session was followed by a short
interview and all the changes that the participants made to their
code during the sessions was logged. These records and the
answers from the interviews were transcribed and a thematic
analysis was performed on the interview transcriptions [29].
All participants were experienced musicians. Table I shows
their demographics in terms of the nature of their musical

experience and their experience with live coding and the
Extempore environment.

ID Live coding experience Music experience First agent
P1 Observed live coding Computer and Tra-

ditional
Recommendation

P2 Experienced with Ex-
tempore

Computer and Tra-
ditional

Disruptive

P3 No Experience Traditional Disruptive
P4 Observed live coding Traditional Recommendation
P5 Experienced with live

coding
Traditional Disruptive

P6 No Experience Traditional Recommendation

TABLE I
PARTICIPANT DEMOGRAPHICS AND FIRST AGENT EXPERIENCED

The post-session interviews were anchored by a set of
questions that directed participants to describe their creative
experiences, whether there were any pain points during the
sessions and how they perceived their interactions with the
agents. Some of these questions were taken from the ques-
tionnaire formulated by Martin et al. [14]. The interviews
were kept largely free-form in order to allow unanticipated
concepts to emerge. When sifting through these interview
transcripts, our aim was to look for any signs of variation
in idea generation between sessions with the recommendation
agent and the disruptive agent. The control session served as a
baseline for the intrinsic level of experimentation and ideation
that the participants possessed.

V. RESULTS

Variations in “idea generation” observed between the ses-
sion interviews included changes in the volume of ideas
generated and the novelty of the ideas generated (as perceived
by the participant). This motivated our selection of codes in
the thematic analysis.

A. No Agent

Participants p1, p3, p4 and p6 exhibited a “structured
approach” to their improvisation. When asked what the partic-
ipants did when they felt that the creativity in their music was
“plateauing”, these four participants indicated they referred to
music theory (such as remembering or referring to a chart
of midi pitches) to lift them out of such a plateau. These
participants were more leisurely in making changes to their
code than participants p2 and p5, as demonstrated by relatively
long pauses in between evaluating code. In contrast, partici-
pants p2 and p5 had a more “experimental” approach to their
improvisation, for example p5 stated that their experimentation
was aimed at building around a “minor jazz chord progression”
by trial and error.

B. Recommendation Agent

The transcripts for the recommendation agent consisted of
three major themes. These themes related to (1) the way that
participants interacted with the agent, (2) the way the agent
interacted with the participants and (3) the way the participants

responded to changes made by the agent. We observed that all
of the participants “cycled through changes” when interacting
with the recommendation agent. This involved requesting
changes from the agent repeatedly without evaluating the
recommended code. When discussing this, p1, p2, p5 and p6
said that they were interested in seeing what the agent was
capable of generating by their repeated requests. Participant p2
felt the changes the agent was making were not “dramatic”
enough. They clarified that, by this, they wanted the agent to
deviate from the existing patterns rather than modify them.
By contrast, participants p4, p5 and p6 liked the fact that the
agent didn’t make any dramatic changes.

Upon observing the participants’ response to the changes
made by the agent, four participants (p1, p2, p5, p6) recalled
specific moments where the change the agent made inspired
a new idea and caused them to make subsequent changes to
their code. Participant p5 said that they accepted and “leaned
into” the agent’s recommended changes about 70% of the
time. This second theme gave us some evidence that the
recommendations introduced by the agent in this mode were
capable of stimulating creativity.

The third theme observed during this session was ‘disorien-
tation’. Participants found it difficult to navigate the code when
the agent replaced their old patterns with its recommended
ones. Although the participants were able to revert the changes
made by the agent and return to their old pattern, the fact that
the agent’s modifications occurred in the same line made it
particularly hard to monitor changes.

C. Disruptive Agent

It was observed across all participants that more time
elapsed in between requests from the disruptive agent when
compared to the recommendation agent. This could imply
that participants took more time to listen to and consider
the changes made by the agent because they were presented
with the change in their final, sonified state. All participants
identified moments where the agent’s changes inspired ideas
which they later implemented. Even though, p4 said that such
moments were rare, all of the other participants felt no anxiety
in responding to an agent that could modify the sound in such
a disruptive manner. Participants p1, p5 and p6 stated that
they took comfort in the fact that they could stop the pattern
generated by the agent at any time if they wished.

Four of our participants, (p1, p2, p4, p6) preferred using the
disruptive agent and all participants claimed that the disruptive
agent triggered a creative response. Participant p6 felt that
their preference for the disruptive agent might be due to
their ability to better comprehend the changes when hearing
them compared with seeing them written in code. Other
participants attributed their preference to a greater enjoyment
of the music created with the disruptive agent. Participants p3
and p5 preferred the recommendation agent. Both attributed
their preference to the ability to be able to see and modify the
changes in the code before sonifying that code block.

VI. CONCLUSION AND FUTURE WORK

In this study, we observed co-creative interactions between
an intelligent agent and six live coders under two modes of
operation; recommender and disruptor. Our study provides
evidence that a disruptive agent can enhance creativity in live
coding performance. Though the disruptive agent gives the
live coder less control over the trajectory of the music, all
participants in our study felt that their ideas were more creative
when interacting with the disruptor agent, while only four
participants felt they had creative ideas with the recommender
agent. This is a particularly interesting finding given that,
excepting the use of a random function, a solo performance
rarely involves the live coder relinquishing control to another
entity.

We note that the disruptions triggered by our agent were rel-
atively incremental. Future work could test the nature and scale
of disruptions that could be tolerated by live coders as well as
testing agents against larger cohorts of more experienced live
coders and evaluating their use in live performance practice.
A larger cohort of participants will also warrant the use of
metrics like the Creativity Support Index [30], to strengthen
the evaluation of the tool as a computational aid for creative
ideation.

Additionally, the effects of hybrid recommender-disruptor
interactions on creative ideation could be explored. Two ex-
amples are ‘in-editor pop-up recommendations’, which do not
evaluate or replace the original code directly, and systems
which replace code in the editor while evaluating it automati-
cally. Both examples could be explored in environments where
the musician has complete or no control over triggering the
agent’s interaction.

ACKNOWLEDGMENTS

We would like to thank the participants in our user study,
which was conducted under protocol number 2018/497 from
the Human Research Ethics Committee at The Australian
National University.

REFERENCES

[1] A. McLean, “Making programming languages to dance to: Live coding
with tidal,” in Proceedings of the 2nd ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling & Design, 2014, pp. 63–
70.

[2] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in
end-user software engineering,” ACM Computing Surveys, vol. 43, no. 3,
pp. 21:1–21:44, Apr. 2011.

[3] C. Nash, “Manhattan: End-user programming for music,” in Proceedings
of the International Conference on New Interfaces for Musical Expres-
sion (NIME), 2014, pp. 221–226.

[4] A. F. Blackwell and S. Aaron, “Craft practices of live coding language
design,” in Proc. First International Conference on Live Coding. Zen-
odo, 2015.

[5] B. Swift, A. Sorensen, H. Gardner, and J. Hosking, “Visual code
annotations for cyberphysical programming,” in 2013 1st International
Workshop on Live Programming (LIVE). IEEE, 2013, pp. 27–30.

[6] C. Roberts, M. Wright, and J. Kuchera-Morin, “Beyond editing: ex-
tended interaction with textual code fragments.” in NIME, 2015, pp.
126–131.

[7] T. Magnusson, “Code scores in live coding practice,” in TENOR 2015:
International Conference on Technologies for Music Notation and Rep-
resentation, vol. 1, no. 1. Institut de Recherche en Musicologie, 2015,
pp. 134–139.

[8] D. Ogborn, E. Tsabary, I. Jarvis, A. Cárdenas, and A. McLean, “Extra-
muros: making music in a browser-based, language-neutral collaborative
live coding environment,” in Proceedings of the First International
Conference on Live Coding, University of Leeds, ICSRiM, 2015, p. 300.

[9] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with in
situ visualizations to aid program understanding,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 2018,
pp. 1–12.

[10] T. Lubart, “How can computers be partners in the creative process: clas-
sification and commentary on the special issue,” International Journal
of Human-Computer Studies, vol. 63, no. 4-5, pp. 365–369, 2005.

[11] G. E. Lewis, “Too many notes: Computers, complexity and culture in
voyager,” Leonardo Music Journal, pp. 33–39, 2000.

[12] R. Rowe, “Machine listening and composing with cypher,” Computer
Music Journal, vol. 16, no. 1, pp. 43–63, 1992.

[13] B. Thom, “Bob: an interactive improvisational music companion,” in
Proceedings of the fourth international conference on Autonomous
agents, 2000, pp. 309–316.

[14] C. Martin, H. Gardner, B. Swift, and M. Martin, “Intelligent agents and
networked buttons improve free-improvised ensemble music-making on
touch-screens,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 2295–2306. [Online].
Available: https://doi.org/10.1145/2858036.2858269

[15] T. Magnusson, “ixi lang: a supercollider parasite for live coding,”
in Proceedings of International Computer Music Conference 2011.
Michigan Publishing, 2011, pp. 503–506.

[16] A. Sorensen and H. Gardner, “Systems level liveness with extempore,”
in Proceedings of the 2017 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software, 2017, pp. 214–228.

[17] D. B. Huron, Sweet anticipation: Music and the psychology of expecta-
tion. MIT press, 2006.

[18] P. Kivy, Introduction to a Philosophy of Music. Clarendon Press, 2002.
[19] F. J. Barrett, “Coda—creativity and improvisation in jazz and organi-

zations: Implications for organizational learning,” Organization science,
vol. 9, no. 5, pp. 605–622, 1998.

[20] M. Cheung, “Reflections on learning live coding as a musician,” in
Proceedings of the International Conference on Live Coding (ICLC),
2019.

[21] C. Nilson, “Live coding practice,” in Proceedings of the 7th international
conference on New interfaces for musical expression, 2007, pp. 112–117.

[22] A. McLean and G. A. Wiggins, “Live coding towards computational
creativity,” in ICCC, 2010.

[23] A. R. Brown and A. Sorensen, “Interacting with generative music
through live coding,” Contemporary Music Review, vol. 28, no. 1, pp.
17–29, 2009.

[24] S. L. Tanimoto, “A perspective on the evolution of live programming,” in
2013 1st International Workshop on Live Programming (LIVE). IEEE,
2013, pp. 31–34.

[25] L. Church, E. Söderberg, G. Bracha, and S. Tanimoto, “Liveness
becomes entelechy-a scheme for l6,” in The second international con-
ference on live coding, 2016.

[26] C. Ames, “The markov process as a compositional model: A survey and
tutorial,” Leonardo, pp. 175–187, 1989.

[27] N. Ali, J. Hosking, and J. Grundy, “A taxonomy and mapping of
computer-based critiquing tools,” IEEE Transactions on Software En-
gineering, vol. 39, no. 11, pp. 1494–1520, 2013.

[28] D. Lewin, Generalized musical intervals and transformations. Oxford
University Press, USA, 2011.

[29] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[30] E. A. Carroll, C. Latulipe, R. Fung, and M. Terry, “Creativity factor
evaluation: towards a standardized survey metric for creativity support,”
in Proceedings of the seventh ACM conference on Creativity and
cognition, 2009, pp. 127–136.

